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Abstract

A benchmark AK optimal growth model with maintenance expenditures
and endogenous utilization of capital is considered within an explicit vin-
tage capital framework. Scrapping is endogenous, and the model allows
for a clean distinction between age and usage dependent capital deprecia-
tion and obsolescence. It is also shown that in this set-up past investment
profile completely determines the size of current maintenance expendi-
tures. Among other findings, a closed-form solution to optimal dynam-
ics is provided taking advantage of very recent development in optimal
control of infinite dimensional systems. More importantly, and in con-
trast to the pre-existing literature, we study investment and maintenance
co-movements without any postulated ad-hoc depreciation function. In
particular, we find that optimal investment and maintenance do move to-
gether in the short-run in response to neutral technological shocks, which
seems to be more consistent with the data.
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1 Introduction

There is an increasing effort to incorporate maintenance and repair activities
in the core of investment theory, and therefore in the core of growth theory.
While traditional Jorgensonian investment theory relies on the assumption of
constant capital depreciation rate, several authors have been pointing at the
numerous shortcomings arising from such an assumption, therefore challenging
the ability of the standard model to account for the investment decision either
at the firm or the aggregate levels. Feldstein and Rothschild (1974) and Nickell
(1975) are two pioneering works in this respect.

Yet the incorporation of maintenance and repair costs in macroeconomic
models of investment and growth has truly started with the illuminating work
of McGrattan and Schmitz (1999). Indeed the lack of economy-wide surveys
assessing the importance of maintenance costs was usually invoked to disregard
them. McGrattan and Schmitz were the first to exploit a Canadian (economy-
wide) survey, and to highlight why and how investment theory can account for
these costs. Their argument was actually easy to make as maintenance and
repair expenditures averaged about 6% of the Canadian GDP and nearly 50%
of spending on new equipment over the period 1961-1993.

Since then, several research projects have been launched on the topic. Let
us mention briefly some of the directions taken. A first bulk of papers studied
the implications of accounting for maintenance expenditures within otherwise
standard models of investment and/or growth. For example Licandro et al.
(2001) introduced maintenance in optimal growth by specifying capital de-
preciation as a decreasing function of maintenance. They studied accordingly
how the latter affects the typical convergence properties inherent to neoclas-
sical theory. Boucekkine and Ruiz-Tamarit (2003) took a tighter avenue, the
standard neoclassical investment firm model,! but they allowed for a more
flexible relationship between depreciation, maintenance expenditures and the
rate of capital utilization. They showed that depending on some deep charac-
teristics of the latter relationship, investment and maintenance decisions can
respond (or not) in the same way to various neutral technological shocks. Co-
movements of investment and maintenance are the central motivation of our
paper, so we will come back later to this point. Note however that the previous
papers only provide characterizations around steady state equilibria, while our
paper solves out the short-term optimal dynamics.

On the quantitative macroeconomics ground, more papers have been writ-
ten recently.? Important contributions to this line of research are due to
Kalaitzidakis and Kalyvitis (2004, 2005) who studied how maintenance of pub-
lic capital affects long-term growth and how to fix optimally maintenance ex-
penditures in this respect. More recently, Boucekkine et al. (2008, 2009) have

! Another paper taking this avenue is Kalyvitis (2006) who empirically found that the in-
corporation of maintenance and repair expenditures into the g-model of investment improves
the relevance of the latter.

2An early investigation of the role of maintenance in the business cycle is due to Collard
and Kollintzas (2000).



shown how to incorporate maintenance and support costs in vintage capital
models.? In contrast to all the other papers listed so far, the approach fol-
lowed does not build on a given functional form directly relating maintenance
to depreciation (initiated by McGrattan and Schmitz, 1999) but derives de-
preciation partly as a result of the endogenous scrapping decision of obsolete
capital items. Therefore the main advantage of the approach is to allow for
an endogenous identification of depreciation due to obsolescence on one hand,
and depreciation due to aging and utilization on the other. Boucekkine et al.
(2009) consider a multi-sector model with both investment-specific and neu-
tral technological progress, and Cobb-Douglas production function in the final
goods sector. In contrast, the model developed in the 2008 paper is a much
simpler AK one-sector model with neutral technological progress.

Our paper also takes this approach. In particular, the baseline model
considered is a version of the AK model described by Boucekkine et al. (2008).
However, while these authors focus on the steady state, we are able to:

1. find a closed-form solution to optimal dynamics by applying the dynamic
programming strategy developed by Fabbri and Gozzi (2008a);

2. and accordingly to study how optimal investment and maintenance move
in response to technological shocks, not only in the long-run, but also in
the short-run.

In this sense, our paper has a double technical contribution: on one hand,
it derives a closed-form solution to the optimal dynamics in the vintage AK
model of Boucekkine et al. (2008), and on the other, it shows how to apply the
dynamic programming approach of Fabbri and Gozzi to an AK model with
endogenous scrapping. The first application, provided by the authors them-
selves, was on the AK vintage capital model of Boucekkine et al. (2005) which
has exogenous scrapping time. Because the involved optimal control problem
has a differential-difference state equation, the problem is infinite dimensional,
and the dynamics cannot be studied with the standard techniques. Technical
details will be given along the way.

More importantly, our paper brings out an original contribution to an im-
portant question in the literature, investment and maintenance co-movements.
In the earlier papers devoted to this issue, notably those devoted to the study
of business fluctuations (see Collard and Kollintzas (2000) and specially Li-
candro and Puch (2000)), the specification of the depreciation function was
chosen in order to replicate some key stylized facts. To make our argument
neater and more precise, whence the depreciation function (U, M) is postu-
lated, with U the capital utilization rate and M maintenance expenditures,
assumptions on second-order derivatives of function §(U, M) are made to fit
the data. In particular, it turned out that the sign of the second-order cross
derivative 6y pr (U, M) is crucial for the shape of investment and maintenance
co-movements. As mentioned above, Boucekkine and Ruiz-Tamarit (2003)
have provided with a systematic analysis of the problem depending on the

3 Another paper taking this approach is due to Saglam and Veliov (2008).



sign of this cross-derivative. When 6yp (U, M) > 0, then investment and
maintenance move in the same direction (Proposition 3, Boucekkine and Ruiz-
Tamarit, 2003). This case is considered to be compatible with data by Li-
candro and Puch (2000). However, when 6y (U, M) < 0, things are much
trickier, and under certain circumstances, maintenance can act as a substitute
to investment, as previously claimed by McGrattan and Schmitz (1999). Our
paper offers a sounder framework to study these co-movements. First of all,
in contrast to Boucekkine and Ruiz-Tamarit (2003), we leave the steady state
and address the problem along optimal transitional dynamics. Second of all,
in contrast to the papers mentioned just above, there is no postulated depre-
ciation function, and the depreciation rate is identified in particular through
an endogenous scrapping decision. Our main result is that in such a frame-
work, optimal investment and maintenance do move together in the short-run
in response to neutral technological shocks.

The paper is organized as follows. Section 2 gives a brief description of the
AK model of Boucekkine et al. (2008) (from now BRM model). Section 3 is
twofold: it first presents the infinite dimensional optimal control problem under
consideration recalling the principles of the dynamic programming approach
used to solve it, then (from Subsection 3.2 on) it attacks the problem deriving
closed form solutions and studying the properties of the optimal paths. Section
4 compiles some numerical exercises conducted to study optimal investment
and maintenance co-movements. Section 5 concludes.

2 The model

The model is one-sector AK model with vintage capital. The aggregate pro-
duction function is AK:
Y(t) = Ak, A>0

where k; is the stock of capital at time ¢, which is given by

¢
ky :/ x(z,t)i(z)dz (1)
t—T(t)
where i (z) is investment at time z, and T (t) is the age of the oldest machine
still in use at time ¢. x (z,t) is a key decision variable in the model: The more
capital goods of vintage z are efficient at time ¢, the more they are used and
the larger is x(z,t). The latter thus measures at the same time the utilization
intensity and productivity of machines of vintage z at time t. Notice however
that strictly speaking, there is no investment-specific technical progress in our
model, the unique (exogenous) technical progress indicator in the model is pa-
rameter A, which may reflect the state of disembodied (neutral) technological
change in the sense that all operating machines are affected in the same way
by technological accelerations through A. By taking this avenue, comparison
with more standard RBC approaches like Licandro and Puch (2000) is more
appropriate.

Another interesting specification in BRM is the introduction of mainte-
nance and repair expenditures. It extends a previous specification of Whelan



(2002) by assuming a variable maintenance cost.* More specifically, the unit
maintenance and repair cost of vintage z at time ¢ is assumed to be an increas-
ing function of its age, t — z, and its relative average productivity,

w<t_z7x(zvt>) :Be’Y(t_z)x(Z?t)u"i_n: 5>0 ) 77>07 K> L.

When 8 = 0, we get Whelan’s specification, maintenance costs become
equal to a constant support cost. Notice that the specification is completely
generic: beside aging, maintenance costs increase with utilization. g > 1
and 1 > 0 are needed to have a finite optimal choice of utilization and for a
finite time scrapping to be possible respectively. Indeed, production net of the
maintenance and repair costs is

y(t) = /t_T(t) B(t—z,x(z,t))i(z)dz, (2)

where

B(t—zx(21) =Az(2,t) —w(t — 2,2 (2,1)) (3)
is the average (and marginal) profitability of vintage z at time ¢t. The uti-
lization intensities x(z,t) are chosen to maximize the average profitability,
B (t — z,xz (z,t)). The first order condition of this maximization problem im-
plies that z(z,t) depends only on the difference ¢ — z and

~

x(t—2z)= zge m1tE), (4)

1
where g = (%) et inducing a decreasing age profile for utilization. The
profile is shifted upward by neutral technological improvements through pa-
rameter A, and shifted down if the maintenance technology worsens through

parameters 3 and 7.

Finally a machine of vintage z is scrapped whence its profitability drops to
zero. Substitution from x (t — z) into (3) yields:

0

B(t—2)=B({t—zuxz(t—2))= Qe 172 _ (5)

where Q = (u — 1) 3 xf), which implies that a vintage will be utilized until a
finite age T' > 0 such that

B(T)=Qe i1l —p=0. (6)

It is easy to prove that whence 2 > n > 0, a finite (and positive) scrapping
time exists (and is unique: T = £=11n £). Tt is also straightforward to see that
T is an increasing function of A and a decreasing function of 3, v and 7. Tech-
nological improvement through A increases the profitability of ALL vintages,
leading to lengthening their lifetime. Notice that this property arises because
technological progress is neutral in the latter case. Investment-specific techno-
logical progress would lead to shorter lifetimes, see Boucekkine et al. (2009).
Here, since we are interested in investment and maintenance co-movements,
and mainly for comparison with the results gathered by Licandro and Puch

Whelan (2002) considered a constant support cost for any vintage at any time.



(2000) or Boucekkine and Ruiz-Tamarit (2003) for example, we consider neu-
tral technological progress accelerations in a one-sector model.’

Finally and as announced in the introduction, our model allows to dis-
entangle obsolescence and physical depreciation in a quite easy and natural
way. The stock of capital at time ¢ can vary due to (i) gross investment, (ii)
the change of the relative average productivity of capital, which is physical
depreciation, and (iii) the scrapping of unprofitable vintages, which is called
obsolescence. Differentiating equation (1), and using that x (t — 2) is given by
(4), yields the following evolution law of capital:

(1) = woi (1) — (€ (8) + 8) k (¢) (7)

where L
() =ae 7T D) ¥

is related to the fraction of scrapped capital at time ¢, and

§= (9)
w—1
is the decline rate of the average relative productivity or equivalently utilization
intensity of each vintage. For quite intuitive reasons, we shall call £(t) the rate
of obsolescence, and the constant § the rate of physical depreciation since it is
related to aging and usage.

There is a big difference between the behavior of the obsolescence rate and
the physical depreciation rate. While the physical depreciation rate is constant,
the obsolescence rate is not so because it depends on the scrapped investment-
capital ratio and it could fluctuate due to the existence of echo effects that
generally characterize the dynamics of vintage capital models as proved by
Boucekkine et al. (2005). On the other hand, and more importantly for our
paper, the rate of physical depreciation need not respond in the same way to
technological accelerations or other shocks. For example, if A increases, the
rate  is unaffected while the obsolescence rate £(t) is likely to respond given
that the impact of A’s increase on lifetime 7" does affect £(¢) in several ways.
We shall come back to these questions later.

In the next section, after presenting the optimal control problem tackled
by BRM, we provide with the dynamic programming strategy allowing to find
out a closed-form solution to the optimal dynamics.

3 The optimal control problem

The optimal growth problem stated in BRM is standard in that it consists
in maximizing intertemporal utility subject to the AK production technology.
The per-period utility function is CARA (with %, o > 0, the elasticity of in-
tertemporal substitution in consumption), and an interesting feature in BRM’s

5Needless to say, considering investment-specific technological progress requires at least
two sectors, consumption and capital sectors. See Boucekkine et al. (2009).



approach is the possibility to save one control variable, maintenance, by using
the net production function (2). Needless to say, capital, maintenance and
replacement investment can be reconstructed from the computed controls and
states. Indeed, these three variables, k(-), M(t) and i,(-) respectively, are
determined by:

k(t) = /t jT zoe ¢ T)i(r)dr, (10)

t t
M(t) = /t Tw(t —7,x(7, t)i(r)dr = /t . [eV(t_T)wge_‘s“(t_T) +n|i(T)dr

= /;T [ug—ﬁ_w_ﬂ +n} i(r)dr an

ir(t) = 0k (t) + zoe°Ti(t — T') = x¢ [ /t tT 6e 0 i(r)dr + et — T)
(12)

It should be also noted that by the same argument, we can also identify the
optimal path of the endogenous obsolescence rate, £(t), thanks to equation (8).
We will be then able to investigate, among others, the issue of substitutability
Vs complementarity of investment and maintenance expenditures. Because of
the delayed integral representation of capital, maintenance and replacement
investment in terms of the investment profile, see (10)-(12), the co-movements
of each of the three variables and gross investment are not obvious at all. Yet
(10)-(12) exhibit a quite striking property, at least for maintenance: by (11),
past investment profile i(z), t — T < z < t, completely determines the size
of maintenance expenditures at ¢. This is not at all the way maintenance ex-
penditures are determined in the recent literature following the path-breaking
contribution of McGrattan and Schmitz (1999). Therefore, our modeling does
bring a new approach to the study of the relationship between investment and
maintenance.

Let us now dig deeper in our optimal control problem. If consumption is
c(t) = y(t) — i(t), then the optimal control problem is:

ar [ (MO0

subject to (for ¢ > 0):

y(t) = /t_T(Qe_(S(t_S) —n)i(s) ds, i(s) given for s € [-T,0). (13)

The integral equation (13) is the net production function obtained using
(2) and (5), T is the scrapping time identified by (6). It is possible to put the
integral equation above into a more standard differential equation by differen-
tiating it. Then we get the following state equation (for ¢ > 0):

0

J(#) = (9 — n)i(t) — 60 /_ il Odri(s) given for s € [-T,0). (14)



The problem has some standard features but it entails a definitely non-
standard characteristic. It has one control, investment, and one state, net
output. The state equation is a delay-differential equation, which implies that
the problem is infinite dimensional. BRM only studied some properties of
the balanced growth paths. This section is devoted to provide a closed-form
solution to optimal dynamics, including asymptotics. The technique used is
inspired by Fabbri and Gozzi (2008a). We first explain its general principles,
then we apply it to BRM.

Apart from small changes some results given in this section can be proved
as in Fabbri and Gozzi (2008a) so we do not repeat them here simply referring
to that paper. Nevertheless some other results (especially Propositions 3.2,
3.3, 3.10, 3.11 and Theorems 3.2, 3.3) are essentially different and cannot be
derived from known results since they use the peculiar characteristics of the
BRM model. We prove them in the Appendix A.

3.1 The method

The optimal control problem is treated following the procedure used by Fab-
bri and Gozzi (2008a).% First we write the problem as an optimal control
problem driven by a Delay Differential Equation (DDE) (Section 3.2) giving
some preliminary results. Then we translate it” as an optimal control prob-
lem driven by an Ordinary Differential Equation (ODE) (without delay) in a
suitable Hilbert space. At that point we apply the dynamic programming to
this problem: we write and solve explicitly the HJB equation in the Hilbert
space, we prove that the solution is the value function and we use the explicit
expression of the value function to find the optimal feedback in closed form.

Solving the HJB equation is in general a difficult task: as well known, it
is impossible in general to find an explicit solution even to finite dimensional
HJB equations, so, a fortiori, explicit solutions of infinite dimensional HJB
equations are very rare. Here we have to use the particular structure of the
problem. The explicit form of the value function allows us to solve the infinite
dimensional problem and to find the closed loop solutions. All the job required
to handle the infinite dimensional nature of the problem is performed in Sub-
section 3.3. Eventually we translate back the solution to the DDE setting and
we find a closed loop solution of our original problem (Subsection 3.4).

3.2 Statement of the optimal control problem in DDE form
and preliminary results

We first introduce a notation useful to rewrite more formally (14):

Notation 3.1 We callz: [-T,0) — R*, the initial datum, i: [0,+00) — RT
the control strategy and i: [—T,+00) — R the function:

5We briefly outline the procedure in this subsection and we refer the reader to Fabbri and
Gozzi (2008a) (Sections 1.2, 1.3, 2) and to its extended version Fabbri and Gozzi (2008b) for
more details on the techniques and on the literature.

"Using the techniques introduced by Delfour (1986) and Vinter and Kwong (1981), see
also Bensoussan et al. (2007) chapter 4.



N | ts) se[-T,0)
is) = { i(s) se€0,+00). (15)

As explained before, standard pointwise initial conditions are not enough to
determine solution paths to the DDEs involved. Rather we need an initial
function on a particular time span depending on the particular delays involved.
Accordingly, we shall work on functional spaces. Hereafter, we give the needed
concepts to get through this problem, four useful functional spaces are defined.

L?([-T,0);R) denotes to the space of all functions from [~7,0) to R that
are Lebesgue measurable and square integrable. L ([0, +00);R) is the space
of all functions from [0, 400) to R that are Lebesgue measurable and square
integrable on all bounded intervals. W12([~T,0);R) denotes the space of
the functions in L2([—T, 0); R) whose first derivative belongs to L?([-T,0); R)
too. Eventually VVlOC([O +00);R) denotes the space of all functions be-
longing, together their first derivatives, to L2 ([0,+00);R). We denote by
L*([-T,0); R") the subset of L?([-T, 0),]R) made by positive functions. Sim-
ilarly we define L2 ([0, +00); RT).

The state equation (14) can now be written as the following DDE (on R*):

§(t) = (Q — n)i(t) — 60 [°. ei(r + t)dr
i(s) = ifs) ¥s € [T,0) (16)
y(0) = [2,7(s)(2e% — n)ds

where z(-) and y(0) are the initial conditions.® We will assume z(-) > 0 and
i(-) # 0 so y(0) > 0. Moreover we impose that 7(-) € L?([-T,0), R*). Thanks
to what we said in the previous sections T, ), §, 0, p are strictly positive con-
stants, moreover we assume that o # 1. For every i: RT — R locally integrable
and every 1 € L?([-T,0),R) the (16) admits a unique locally absolutely con-
tinuous solution (so (16) must be understood in integral sense). Thanks to (6)

the solution is: ¢

yra(t) = / i(s)(Qe007%) —p)ds (17)
(t=T)

The functional to maximize is

def s (i) — (1) 7
J(Lz)—/o e’ (1= o) ds

over the set
def {i(-) € L} ([0, +00); RT) : i(t) € [0, yz:(t)] for almost all ¢ € RY}.
The choice of Z; ensures that y;;(-) € W,22([0, 400); RT) and then it is contin-

loc

uous. We call Problem (P) the problem of finding an optimal control strategy
i.e. an i*(-) € Z; such that:

S T B BN 1)t 1) b
J([/7 )_ V( ) B i(~)€pzz {/0 ' (1 - U) d } (18)

V' is called value function.

8Indeed y(0) is not a datum as it depends on 7(-) but (as we will see below) it is convenient
to consider it a datum.



3.2.1 Preliminary results

We now give a preliminary study of the problem, in particular concerning
the asymptotic behavior of admissible trajectories, the finiteness of the value
function and the existence-and-uniqueness of optimal strategy.

Asymptotic behavior of admissible trajectories To find conditions
ensuring the finiteness of the value function we need first to study the asymp-
totic behavior of the admissible trajectories, in particular to determine the
maximum asymptotic growth rate of the output y(-). (17) suggests that it is
obtained when the investment is maximal (i.e. i(¢) = y(¢) for all ¢ > 0, since
(Qe% — n) is always positive in [~T,0]), Proposition 3.1 will confirm such an
intuition. In such a case the y(-) follows the DDE:

yir(t) = (=) ynr (1) = 092 [Ly ., yaa(r + t)dr (19)

yr(t) =[O, (s +)(Qe?* —n)ds >0 te[-T,0].
Proposition 3.1  Given an initial datum i(-) € L*([-T,0); R") and a control
i(-) € Z; we have that the solution y;;(-) of (16) is dominated at any timet > 0
by the solution ya(-) of (19).

Proof. See the proof of Proposition 2.1.3 of Fabbri and Gozzi (2008a). O

Now we study the DDE (19). The associated characteristic equation is

Q {1 — e 0T — ﬁ (1 — e_(‘s“‘Z)T)} s i z#£ =6
z=Fi(z) = (20)
Q[1—e T —6T]; if z=—6

As shown in the subsequent proposition, the following hypothesis is crucial in
studying the roots of the characteristic equation:

Hypothesis 3.1 We assume that % (1 — e T _ 5T6*5T) > 1.

Hypothesis 3.1 is very interesting from the economic point of view. One easy
way to get through it is to see its implications when the scrapping time is
infinite (which happens when 7 goes to zero) featuring a kind of standard AK
limit case (with a constant saving rate equal to 1). In such a case, the hypoth-
esis simply writes as > §, which is similar in spirit to the condition set in
the standard AK model to ensure positive growth (that is A > §, where ¢ is
physical depreciation). Actually 2 plays the role of parameter A in the stan-
dard AK model: in our model with maintenance and endogenous utilization,
the profitability of capital goods does not depend on parameter A but also on
those of the maintenance technology which matter crucially in the utilization
decision. If the ratio % is not large enough, then even though all resources of
the economy are channeled into investment, the process of capital accumula-
tion need not be ever-lasting, and the economy need not grow in the long run.
The following proposition identifies precisely this feature.

10



Proposition 3.2 There exists a strictly positive root w to the characteristic
equation (20) if and only if Hypothesis 3.1 is satisfied; in this case we have
that:

(i) the only real roots of (20) are 0 and ® and they are simple;

(ii) all the complex roots are simple (except at most two).

Proof. See Appendix A. O

From now on, we assume that Hypothesis 3.1 holds and we call m the strictly
positive root of the characteristic equation. As one can infer from the discussion
above, 7 is the maximal long-run growth rate the economy can generate. If
Hypothesis 3.1 does not hold, @ cannot be positive. The next proposition
formalizes this point in more accurate terms.

Proposition 3.3  Given any initial datum t(-) € L?>([-T,0); RT) the solution
of (19) is continuous on [0,+00) and

yn(t) = ae™ +o(e™)  for t — +oo
where « is a coefficient depending on T.

Proof. See Appendix A. O

Finiteness of the value function As stated in the subsequent proposi-
tion, an immediate consequence of Proposition 3.1 and Proposition 3.3 is that
the following hypothesis a sufficient to ensure that V' is finite:

Hypothesis 3.2 We assume that p > w(1 — o).

Proposition 3.4 If Hypotheses 3.2 hold then —oo < V(7) < 400 for all T in
L2([-T,0); R*).

Proof. See the proof of Propositions 2.1.10 and 2.1.11 of Fabbri and Gozzi
(2008a). O

From now on we always assume that Hypotheses 3.1 and 3.2 are satisfied.

Existence and uniqueness of the optimal strategy The following
proposition gives an existence and uniqueness result for the optimal strategy:

Proposition 3.5 Given an initial datum t(-) € L*([~T,0);R") there exists a
unique optimal control in Iz, i.e. we can find in Iy a unique admissible strategy
i*(-) such that V(z) = J(z;i%).

Proof. For the existence see the proof of Proposition 2.1.12 of Fabbri and
Gozzi (2008a), for uniqueness it is enough to use in a standard way the strict
concavity of the functional J. O

The above existence result is an application of the direct method (i.e. we
take a maximizer sequence and prove that it converges to a maximum point)
in the space of the Lebesgue measurable functions from [0+0c0) to R integrable
with respect to the measure du(t) = e~8tdt where dt is the Lebesgue measure

11



and ¢ a strictly positive constant (the same argument is used in Askenazy and
Le Van (1999)).

3.3 The equivalent problem in infinite dimensions and its so-
lution

3.3.1 Rewriting the problem in infinite dimensions

Given t > 0 the “history” of investments at time ¢ will be indicated by 7;
defined as:
w: [-T,0] — R; u(s) =1t +s) (21)

Moreover if we define the continuous linear mappings:

0
C:CI-T,0] =R, C: f o (2= y)f(0) — 69 / & Frydr,  (22)

-7
0

RiD(-TO0LR) R Rife [ 0@ -nds (29
-7

we can rewrite the state equation (16) as
yt) =C(u), t>0;  (y(0),%) = (R(2), ) (24)

Note that (24) has not a pointwise meaning and has to be understood in
integral sense as (16). In treating the infinite dimensional problem, we will
consider the state equation with general initial condition leaving aside the link
between the initial conditions 7(-) and y(0):

y(t) =C@u), t>0;  (y(0),%) = (vo, 0). (25)
Its solution is
0
Y(yo,0),i(t) = vo — R(2) + /T it(s)(Qe‘Ss —n)ds. (26)

Of course we have that yr) 7),i(-) = yzi(-) as defined in (17).
As in Fabbri and Gozzi (2008a), we rewrite the problem in the infinite

dimensional space def
M? = R x L*([-T,0),R).

A generic element # € M? is denoted as a couple (2, ). The scalar product
in M? will be the standard one in a product of Hilbert spaces i.e.:

(29, 21, (2, 21) o2 el 100 4 (xb, 24 2, forall (2%, 21), (20, 21) € M2

We introduce the operator A on M?:
{ D(A) E {40, 4") € M2 : g € WIA([-T,0),R), v = 4 (0)}

A: D(A) — M? APt =l (0, Dyt).

With an abuse of notation we can identify, on D(A), ¥'(0) with °. So we
can redefine the operator C on D(A) as

C:D(A)—R

C(¥0,wh) = Cot = (2= n)e'(0) = 60 [2 4! (r)dr

12



We now introduce the state of the infinite dimensional problem: the so called
“structural state”. First we denote by F' the function

F: L*([-T,0),R) — L*([-T,0),R);  F:iw F(i).

Fli)(s) / 5Qi(—s + 1) dr, s € [=T,0). (27)

-7
Definition 3.1 Let yo € RT, i(-) € L*([-T,0),R") be the initial data; let
i() € LIQOC([O,—I—OO);R“‘) and Yy, 1),i(*) as in (26). Set z def (vo, F (7)) € M?

(the initial datum in the Hilbert setting). The structural state of the system is
the couple . ;(t) = (22 ,(t), 2L (1)) = (Yyo0),i(), F (i) € M? for all t > 0.

2,0 [N
The theorem below links the dynamics of y(-) with that of the structural state.

Theorem 3.1  For all T > 0, the structural state x ;(+) is the unique solution®

n frecionan : Sreromnun) @
of the equation: %x(t) = A*xz(t) + C*i(t), t >0
{ 2(0) = = = (390, F(7) )

where A* and C* are the duals of the continuous linear operators A: D(A) —
M? and C: D(A) — R.

Proof. See e.g. Bensoussan et al. (2007) Theorem 5.1 page 282. O

Before proceeding, we need an existence and uniqueness result for the state
equation for all initial conditions, not only for the ones given in (30).

Theorem 3.2 The equation

d
ax(t) = A*x(t) +C*i(t), t > 0; z(0) =z
for = € M?, i(-) € L% ([0,+00);R) has a unique solution in 11 (defined in

loc
(29))
Proof. See Appendix A. O

Now we can formulate our optimal control problem in infinite dimension.
The state space is M?, the control space is R, the time is continuous. The
state equation in M? is given by

d
&m(t) = A%z(t) +C*i(t); t>0, z(0) =z (31)

for = € M?,i(-) € L2 ([0, +00);R). Thanks to Theorem 3.2 it has a unique
solution . ;(-) in IT (it extends the structural state defined in Definition 3.1
only for positive initial data and control), so ¢ + 20 .(¢) is continuous and it

2,0
makes sense to consider the set of controls

“Here the solution is meant in the following weak sense: for every i € D(A)

% W%w(t)) = <A¢,$(t)>M2 + Z(t)CW% te (07T] (28)
(1, 2(0)) 2 = Y0 + 1/’17F(Z) L2-

13



70 def {i(-) € L2 ([0, +00); RT) = i(t) € [0,22,(t)] for a.e. t € RT}

2,0

The objective functional is

o0 ;[]0 . — 1 l1—0o
Jo(z;1) dif/o e—ps( 2,1(7(5)1 - U(T)f))

The value function is then

ds.

Vo(z) = sup Jo(z;1) it Z,+#0,
i(-)EL,
. def . 0
while Vj(2) = —o0 if T3 = 0.
Remark 3.1 (Connection with the starting problem) If we have, for some
i(-) € L*([-T,0);R"), z = (R(2),F(2)) , we find I = Tp, Jo(z;i) = J(&;4)
and Vp(z) = V(¢) and the solution of (31) is given by Theorem 3.1. O

3.3.2 Solving the infinite dimensional problem with dynamic pro-
gramming

The HJB equation and its explicit solution The current value Hamil-
tonian is a function with values in the extended real line R and defined on
EY [((x,Pi)e M2x M2 xR :2° >0, i € [0,2°], P € D(A)}. Its form is
the following ((i,CP)g is the product on R):
0 Nl—o
\d : r —i
Hov (20,21, Pi) 2 (2%, 1), AP) 2 + (i,CP)R + ((1_37)
in the points in which 2° # i and, for o € (0,1), also for 2 = i. When o > 1
the above is not defined in the points in which z° = 4. In such points we set
then Hoy = —o0.
The maximum value Hamiltonian (or simply call Hamiltonian) real func-

tion defined on G &/ (x,P) e M2 x M? : 2° >0, P€ D(A)} as
H(‘T7P) = Sup HCV(xvpvi)'
i€[0,x9]
The HJB equation of our system is
pVo(z) — H(z, DVo(x)) = 0. (32)

We now recall the definition of solution of the HJB equation, and then we
provide the explicit solution.

Definition 3.2 Let © be an open set of M? and ©1 C © a closed subset. A
function g € C1(O;R) satisfies the HIB equation (32) on ©1 if, for all z € Oy,
(x,Dg(2)) € G and pg(z) — H(z, Dg(2)) =0

Remark 3.2 If P € D(A) and (CP)~Y/7 € (0,2°], by elementary arguments,
the function Hey (z, P,-): [0,2"] — R admits a unique maximum point given
by iMAX = 20 — (cP)~1/7 € [0,2°) and then we can write the Hamiltonian in
a simplified form:

H(w, P) = (a, AP)yp2 +2°CP + o - (cP)%. (33)
The expression for iM4X will be used to write the solution of the problem (P)
in closed-loop form. O
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We define X {z € M? : 2% >0, <:c0+f0T 6”51:1(8)d5> > 0} and,

calling v def w,

e 0 1—
def {(azojxl) €eX : / ™zt (s)ds < 2° V} (34)
-7

It is easy to see that X is an open set of M? and Y C X is closed in X. We
define, for x € M? the quantity

0
To(z) def 0 —{—/ e™ 't (s)ds. (35)
-7

It is now possible to identify an explicit solution to the HJB equation (32)
using the functional I'g(.) just defined. This is given in the next proposition.
Proposition 3.6 Under the Hypotheses 8.1 and 3.2 the function

v: X - R; v(x) = alo(z)' 7

def o 1 _ p—m(l—0)\ 7 1
“= (1—o0)m ( om > (1—o0)m (36)

is differentiable in all x € X and is a solution to the HJB equation (32) in all
the points of Y in the sense of Definition 3.2.

with

Proof. See the proof of Proposition 2.2.9 of Fabbri and Gozzi (2008a). O

The crucial proposition above deserves some comments. In the standard AK
optimal growth model!?, it is trivial to show that the solution to the corre-
sponding HJB equation is actually k'~ (times a multiplicative constant). In
our infinite dimensional case, the role of capital is played by I'g(x), which is the
equivalent concept of capital in our infinite dimensional problem. This concept
is introduced and justified clearly in Fabbri and Gozzi (2008a).!! Things will
be immediate in Section 3.4 once we apply this methodology to our economic
problem, that is once I'g(x) is explicitly expressed in terms of the economic
variables.

The Closed Loop control in infinite dimensions Once the value
function identified, it is possible to study the closed loop control (feedback
strategy), or in other words, the policy function. Things are apparently more
complicated in infinite dimensions. Indeed, a preliminary definition is needed.
Definition 3.3 Given i(-) € L*([-T,0);R") with and © #Z 0, we call ¢ €
C(M?) an admissible feedback strategy associated to i(+) if the equation.

{ Lag(t) = Azy(t) + C*(d(xg(1))), t>0
z4(0) = (R(2), F(2))

1076 be precise, without irreversibility constraint on investment.

11p particular, these authors show that when 7" goes to infinity, featuring the standard AK
model, their concept of equivalent capital converges well to the standard concept of capital
in the one-dimensional case.
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has an unique solution xy(-) in II and ¢(x4(-)) € I;. We denote the set of
admissible feedback strategies associated to i(-) with AFS;. We say that an
admissible feedback strategy associated to (-) is an optimal feedback strategy

1—0o
330 — X
associated to i(-) if V(1) = Vo(R(@), F(2)) = f;™ oot (280 ﬁ(_j)“”) dt.

The set of optimal feedback strategies related to ©(-) will be denoted by OFS;.

We want to use the solution v of the HJB equation (32) given in Proposition
3.6 to find the feedback strategy. v is a solution of the HJB equation only in a
part of the state space (the set Y'). The function v will be the value function
and the associated closed loop strategy (i4X defined in Remark 3.2 where P
is the gradient of v) is optimal if and only if the related trajectory remains in
Y. To guarantee this we have to impose another condition on the parameters
of the problem. It substantially requires to rule out corner solutions.

Hypothesis 3.3 We assume that 1/(1 — (s%re_(‘s“r)T) <1

From now on we will assume that Hypotheses 3.1, 3.2, 3.3 are satisfied. At
this stage, a further (anticipated) point can be made on the latter assumption.
While it is designed to rule out corner solution, it is consistent with a further
requirement. Indeed, we will see in Theorem 3.4 that the optimal paths grows
at most as e where g = =£. So the condition to have a strictly positive
growth of the BGP is ¢ > 0 i.e. p < w. It is easy to see that the condition
g > 0 implies Hypothesis 3.3 so our assumptions include all cases of strictly
positive growth and also cases with possibly negative growth.

It’s time now to state our results on optimal feedback strategies. The
following theorem is useful.
Theorem 3.3 For all i(-) € L*([~T,0); R*) with i(-) # 0 the function
¢: M2 SR, o(z) Y 20— uly(x) (37)
is in OF'S;.

Proof. See Appendix A. O

Finally, we get the explicit expression for the value function Vj:
Corollary 3.1 Given any i(-) € L*([-T,0); R") and setting z = (R(7), F (7))
we have that V (2) = Vo(2) = v(z) where v is given in Proposition 3.6.

Proof. See the proof of Corollary 2.2.14 of Fabbri and Gozzi (2008a). O

3.4 Going back: solution to the original problem

Now we use the results we found in the infinite dimensional setting to solve the
original optimal control problem P. The results of this subsection are immedi-
ate corollaries of those of the previous one so we do not prove them. First of all
observe that, given any f(-) € L3([-T,0),R*) and writing 2 = (R(f), F(f)),
the quantity I'g(z) defined in (35) becomes

0 s
L) T (R(F). F()) = y(0) - / e / GQf(-s+r)edrds. (39
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We will use such an expression both when f is the initial datum (f = 7) and
when f is the history f = 7% for some ¢t > 0. From Corollary 3.1 we get the
following;:

Proposition 3.7 The explicit expression for the value function V related to
problem P s

0 s l1-0o
V(@) =al@) 7 =a <y(0) — /_T e’ /_T 0Q(—s + 'r)e‘srdrds) (39)
where a is defined in (36).

From Theorem 3.3 we get the optimal strategies of problem P in closed
loop form:
Proposition 3.8 The optimal control for problem P i* and the related state
tragectory y* satisfy, for all t > 0, i*(t) = y*(t) — vI'(%(-)). In particular,
for all t > 0, the optimal consumption path c*(t) = y*(t) — i*(t) satisfies

c(t) = v ()

3.5 Dynamic behavior of the optimal paths

We analyze here the dynamic behavior of the optimal paths using the results of
previous subsection. First we prove that the consumption ¢*(-) is exponential
and we write a suitable DDE for y*(-) and i*(-):

Theorem 3.4 Let i(-) € L*([-T,0);R"). Taking the initial data (y(0),%) =
(R(z),7) in (16), we have

c*(t) = e, vt >0 (40)

where g = ==L and

def

A @) =y <y(0) _ /_ OT e /_ ST(FQL(—s—I—r)e‘STdrds). (41)

Moreover the optimal control for problem P i*(t) is the unique solution in
W20, +00); RY) of the following DDE:

loc

t
i*(t) = / i*(8) Qe — p)ds — Ae?; ig=1 (42)
(t=T)

and the optimal y*(-) is the unique solution in VV&’?([O,%—OO);]R‘F) of the fol-
lowing integral equation

0 t
yr(t) = / (Qe® — n)i(s)ds +/ [y*(s) — Ae®]ds, t>0. (43)
(t=T)A0 (t—T)vO0

Proof. See the proof of Lemma 2.3.3 and Theorem 2.3.4 of Fabbri and Gozzi
(2008a). O

The previous proposition completely determines the optimal dynamics.

Consistently with the AK vintage models studied in Boucekkine et al. (2005)
and Fabbri and Gozzi (2008a), detrended consumption is constant as in the
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standard AK model. The growth rate g = ”T_p is easily interpretable having

in mind the previous comments on 7 in Section 3.2.1. The constant detrended
consumption level, A, depends here on several factors. First of all, it depends
on the whole investment history, and not only on the initial capital stock as
in the standard AK model.'? Second, it depends on ALL the parameters of
the model, including those of the maintenance technology through parameter
Q. Countries having different maintenance strategies (reflected in different )
are likely to have different optimal consumption levels, and more importantly
from the economic development point of view, different output levels. Indeed,
once optimal consumption dynamics singled out, the dynamics of optimal in-
vestment (and thus output) follow simple linear (but non-autonomous) DDEs
that can be solved either in closed form or numerically. Therefore in contrast
to consumption, both investment and output optimal paths are not simple
exponential functions. Before getting to the dynamics, let us investigate their
asymptotic behavior. The following easy proposition is accurate enough.

Proposition 3.9 Defining, for t > 0, the optimal detrended paths as:
v < ey @), 0 W, ) eew, 20

we have that the optimal detrended consumption path cg(t) = (yg(t) — ig(t))
is constant and equal to A (defined in (41)). Moreover there exist positive
constants 1g and yg such that

tl}eroo ig(t) = iB and tl}—ri{loo yq(t) = yB.
We have, when g # =9,
) — _R A — R A
B (2 Qe —emtT)essds) 1 v = A+ (" 0p Q(eds—e=0T)eg3ds)—1" (44)
Proof. See the proof of Proposition 2.3.5 of Fabbri and Gozzi (2008a). O

Not surprisingly, both investment and output grow at the same asymptotic
rate as consumption. More interestingly, the long-run investment and output
levels ip and yp do depend on the initial conditions, which is a common feature
of endogenous growth models, and on the relevant parameters of the model,
including the parameters of the maintenance technology as expected. But
the latter dependence is quite complicated to investigate analytically. This
is consistent with the balanced growth path (BGP) analysis undertaken by
Boucekkine et al. (2008). Of course we can also develop a balanced growth
path analysis as usual in growth theory, starting from the following definition.

Definition 3.4 We will say that the system is on o Balanced Growth Path
(BGP) if there exists ag,by > 0, and real numbers ay,by such that, for all
s € [T, +0), 7*(s) = ape™® and, for all s € [0, +00), y*(s) = bye’'.

12Countries sharing the same initial capital stock but having a different initial investment
datum will have a different consumption level.
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Notice that our definition accounts for the delayed nature of the operators

driving the dynamics of the model like in equation (42). This features the
dependence of the BGP on the initial investment datum. The next proposition
highlights this sensitive property.
Proposition 3.10 If g > 0 the system admits BGPs. More precisely, if
g > 0, all the possible BGPs are those related to initial data of the form
i(s) = aped® (for all s € [-T,0)) for some ayg € [0,400). In this case we
have that 7*(s) = aped® for all s > =T and y*(s) = bped® for all s > 0 where
by = fET Q% — e agedds.

Proof. See Appendix A. O

We study now the particular case in which the initial datum has the form
i(s) = ce9®, for all s € [-T,0), for some real constants ¢ and gy (c positive).
This is the case we analyze in the numerical simulations in Section 4 and its
simplicity allows to solve the integrals we found in our study and to provide a
closed-form solution to the whole optimal dynamics, and not only the BGPs.
The next proposition does the job.

Proposition 3.11 Letc > 0, go > 0 and let
02 [-T,0] — R; i(s) = ce’%.
Taking the initial data (y(0),%) = (R(7),7) in (16) we have:

o F(D): [-T,0) = R
(9 { F(2)(s) = —6Qce™905 Lo (elootd)s — ¢=(g0+0)T) | s € [-T,0);

g0

(ii) T(0) = ( e (] o (Ha0)T) _IE (] _ gmo0T) _ 00 1 (] _ o~(b4m)T)

0+go 0+go O+
)]
(iii) A =vI'(7) and V(7)) = u*”ﬁr(zﬂ*o;
(iv) ip = o 1_67(5+9>T1_ﬂ Pp— _1A and yp = (ip + 1)A.
735 ( )= )
Proof. See Appendix A. O

Items (i) and (ii) of the proposition give the explicit forms of functionals
F(.) and I'(.) (applied to initial datum) which are enough to obtain a closed
form solution to optimal investment dynamics by Theorem 3.8 in Section 3.4.
We shall now investigate the implications of such solutions for the optimal
investment and maintenance co-movements.
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4 Optimal investment and maintenance co-
movements

In this section, we run some numerical experiments using the analytical find-
ings of the previous section. We choose to present the results of a non-
anticipated, permanent and positive shock on the productivity parameters A.'3
Before the shock, the parameters are chosen so that the long-run growth rate
of the economy is between 2% and 3%, the ratio maintenance to investment is
about 50% as documented by McGrattan and Schmitz (1999), capital lifetime
is between 10 and 15 years, and an obsolescence rate between 1% and 3%, both
figures being quite common in the literature.'* Figures 1 to 4 show an example
of the optimal dynamics following a non-anticipated permanent 1% increase
in the productivity parameter A for investment, maintenance, replacement in-
vestment and the obsolescence rate. The first three variables are detrended in
the sense that each variable, say ¢(t), is reported as ¢(t) = q(t) e 79, Vt > 0,
where g is the long-run growth rate resulting from the permanent shock. Need-
less to say, the value of machines’ lifetime, T, is adjusted from ¢ = 0, since the
A-shock also affects this variable.!® Last by not least, the figures are generated
with an initial investment profile of the form 7(s) = ce9® as anticipated in the
previous section. In the numerical illustration considered here, we set ¢ = 1
and go is the long-run growth rate of the economy before the A-shock, here
qgo = 254%

Figures 1 and 2 give the optimal investment and maintenance dynamics
respectively. Because initial investment profile is 7(s) = 9%, detrended invest-
ment satisfies:

lim i(t) = lim e90=9* =1,

t—0— t—0~
Figure 1 thus shows clearly that the permanent technological stimulus induces
a neat increase in (detrended) investment just after the shock relative to the
corresponding level just before the shock: Investment jumps at t = 0! This dis-
continuity is quite common in the DDE literature (see Boucekkine et al., 2005).
More importantly, Figure 1 captures very well the essential features of optimal
adjustment in this kind of models: Investment is stimulated in the short and
long-run, though the long-run “multiplier” is smaller. In the middle, the dy-
namics are much more persistent than in a model with homogeneous capital
due to replacement dynamics. Due to these dynamics, which are themselves
induced by the optimal constant lifetime of machines, convergence to the new
balanced growth paths is oscillatory (although the scale of the figures does not
reflect this so neatly after ¢ = %) This is again consistent with the available
AK theory with vintage capital. Figure 2 displays the optimal dynamics of

13We have also studied the consequences of shocks on the support cost, .

MMore precisely, three parameters were fixed and four varied. The fixed parameters are:
B=1,0=4and p =3%. The four varying parameters were: v, A, n and p.

15In Figure 1 to 4, we have: A = 0.62 before the shock, v = 1.89, n = 0.0296 and p = 10.
This implies a long-run growth rate equal to 2.54% before the shock, and equal to 2.68%
after the shock. The ratio maintenance expenditures to investment is close to 50%, and the
machines’ lifetime is equal to 12.5 before the shock. The latter increases very slightly to 12.55
years after the shock. The resulting obsolescence rate is equal to 1.30% before the shock.
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Detrended investment at time t

Detrended maintenance at time t
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Figure 1: Detrended investment optimal response

Detrended maintenance after the shock
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Figure 2: Detrended maintenance optimal response



capital maintenance. For a careful interpretation of the dynamics, the reader
should note that given our parameterization

lim M (t) = 0.5008.

t—0~
Figure 2 thus implies even the maintenance variable jumps at ¢ = 0, which is
much more surprising than the investment jump. Indeed, M (¢) is not a control
variable, and moreover, it is a weighted time integral of the investment profile
from t to t —T, as reflected in equation (11). So why this jump? This jump oc-
curs because the increase in the productivity parameter A changes the value of
optimal lifetime from ¢ = 0. Therefore the lower integration bound appearing
in (11) gets modified, inducing the jump. More interestingly, one can notice
that investment and maintenance move in the same way. Maintenance goes
up at ¢ = 0 because capital lifetime increases (slightly) inducing a larger set of
vintages to maintain. The remaining maintenance dynamics are explained by
investment dynamics given the integral law of motion (11).16 Overall, one can
see that optimal investment and maintenance patterns show a great degree of
complementarity, a property which we found to be robust to a wide variety of
shocks and initial conditions.!”

Fraction of scrapped capital after the shock
0.01300 T T T T T

001285 1

0.01280

001285 1

i at time t

0.01280

00275 1

0.01270 : : ; ! :
1] TR T 327 2T 52T

Time t (expressed in term of T)

Figure 3: Optimal obsolescence rate behavior

Figures 3 and 4 give the optimal dynamics of the obsolescence rate £(t) and
replacement investment. The former is given by equation (8), and the latter
by (12). Two important characteristics have to be mentioned. First of all, and
this may be the most salient feature of Figures 3 and 4, the two paths show a
discontinuity at ¢ = T', which comes trivially from the fact that investment is
jumping at t = 0. Indeed, both variables depend on the term (¢t —T'). Second,
for the same reason as for maintenance expenditures, there is also a much

'%0One could differentiate (11) with respect to time to make explicit the link.
"Tn particular, we try shocks on the parameters of the maintenance technology.
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less apparent jump of replacement investment and the rate of obsolescence at
t = 0. Instantaneous adjustment of T' to its new value, following the A-shock,
do include jumps of the two variables at ¢ = 0. More precisely, both the rate
of obsolescence and replacement investment experience a downward jump at
t = 0.'® While investment shifts upward, replacement investment goes down
just after the shock, which is a powerful reason to distinguish between the two
components of investment in any business cycle study. Why? As the value of
the optimal lifetime of machines goes up, less machines will be thrown out just
after the shock, the obsolescence costs will be lower (which is reflected in the
initial downward shift in the rate of obsolescence), and replacement investment
too. The remaining dynamics derive from investment dynamics according to
the lagged structures appearing in the law of motions (8) and (12), ultimately
yielding oscillatory convergence to the new balanced growth path.

Detrended replacement investment after the shock
0559 T T T T

0.6583 A
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Detrended Ir at time t

0.6564

0.6563

0.65582 - : : : :
0 T2 i 327 2T 22T

Time t (expressed in term of T)

Figure 4: Detrended replacement investment optimal response

5 Conclusions

In this paper, we have considered a benchmark model of the AK type, in-
corporating maintenance costs and allowing for endogenous obsolescence, in
order to study optimal investment and maintenance co-movements in a frame-
work where such co-movements do no rely exclusively on a postulated ad-hoc
depreciation function as it is usually done in the related literature. At equilib-
rium, we prove that current optimal maintenance is a weighted integral of past
investment profile with time span depending on the endogenous pace of obso-
lescence. Adapting a recent analytical approach to vintage models proposed
by Fabbri and Gozzi (2008a), we have been able to find the optimal dynamics
of the model in closed form. Completing the job with numerical assessment,

18To be more precise, the rate of obsolescence and replacement investment (detrended) are
equal to 1.30% and 0.659 respectively just before the shock.
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we found that investment and maintenance move in the same way in response
to neutral technological shocks, which suggest that they act as complementary
to each other, which seems to be consistent with data.

Deviating from AK framework for more comprehensive empirical work will
of course disable the analytical approach mostly taken in this paper. For
example, with less stylized Cobb-Douglas technologies as in Boucekkine et al.
(2009), the involved state equations are no longer linear delay differential equa-
tions, so that one can only resort to a full computational approach. Moreover,
accounting for investment-specific technological progress will make the analy-
sis of investment and maintenance co-movements even trickier. Indeed, while
accelerations in neutral technical progress lengthen capital lifetime as shown
in this paper, investment-specific technological progress tends rather to de-
crease it (see again Boucekkine et al. (2009)). In a model with both forms
of technological progress, investment and maintenance co-movements would
therefore depend a lot on the composition of technological progress and on the
sensitivity of the scrapping decision to each form of technical progress. This
goes much beyond the scope of this paper. But precisely because the latter
general problem seems quite hard to address properly, we do believe that the
benchmark analysis provided in this article is a necessary step in this research
program.

A Appendix: Proofs

We start by proving the following lemma that will be used in the proof of Proposition
3.2

Lemma A.1 The function Fy defined in (20) is strictly increasing and strictly
concave. Moreover Fi(—o0) = —oo, Fi(0) = 0, Fi(+o0) = Q(1—e°") and

F{(0) = (1—eT —§Te=T).

Proof. Tt is not difficult to see that, setting h(z) =1 —e % — ze™*, we have

197 . 1 0 .
Fi(z) = mh((é +2)T), if z#-§ and  F(z) = EQéT ,if z=-4
(45)
while, setting g(z) = —2h(x) + zh/(z) = =2+ 2e % + 2ze~* + 2%~ we get
F'(z) = &g((&i—z)T) if 2#4-0 and  F/(z) = —EQ(ST3 if 2=-4
! (04 2)3 ’ ! 3 ’ )
(46)
Now by simple computations we can see that
g(x)
h(z) >0, Vo e R - {0} and ?<O, Vr € R — {0}.
so the whole claim of the Lemma easily follows. O

Proof of Proposition 3.2
The first statement is an immediate consequence of Lemma A.1. Statement (i) follows
observing that F}(0) > 1 by Hypothesis 3.1 and F](7) < 1 by the strict monotonicity
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and concavity of Fj.
To prove (ii) we first observe that (20) can be rewritten, multiplying by 6 + z # 0, as

24 [-Q1—e ) + 6] 24 6QeT — 5Qe”OTIT = . (47)

All complex roots of (20) are also roots of (47): they are at most countable and
have the form \; = ap =+ ib; for two sequences of real numbers {a;} and {by}.
Now a characteristic root is non-simple if and only if it satisfies also the equa-
tion 2z + (—Q((l — e_5T) + 5) + 6QTe~+2)T — (. Combining the two equations
we get that a non simple characteristic root z must solve the quadratic equation

Q((1—e°T) -6 .
22+ [% -Q (1 — e_5T) + 5] 2+ 6Qe 0T + M This means that there are
at most two complex conjugate non simple characteristic roots. O

Proof of Proposition 3.3
By Diekmann et al. (1995) page. 34 and the Proposition 3.2 it follows that the solution

of (19) is continuous on R™ and
N

yar(t) = o(e™) + ae™ + ij(t)e)‘ft for t — 400
j=1
where \; are the finitely many roots of the characteristic equation with real part
exceeding 7 and p’ are C-valued polynomial in t. Now we can easily see that the
part due to the trigonometric polynomial Zjvzl p;(t)erit vanish because the solution
remain always positive, due to the following property: if the initial datum z(-) is not
identically zero then y;(t) remains positive for all ¢. Indeed, the solution is continuous
and its value in 0 is strictly positive. If there exists a first point ¢ in which the solution

is zero it satisfies:
i 0

ym(t) = yn (s + ) (Qe — n)ds + / i(s 4+ 1)(Qe’* —n)ds
(F=T)A0 (F=T)V0

but the right hand side of equation is strictly positive because # is the first positive

point in which ys(t) = 0. O

Proof of Theorem 3.2
Thanks to Theorem 5.1 page 282 in Bensoussan et al. (2007) we know that a so-
lution exists for all i(-) € L% _([0,40o0);R) when the initial datum z is in N :=
R x F(L*([-T,0);R)). Moreover the same theorem ensures that having a weak solu-
tion as defined in (28) is equivalent to having a solution in the following mild sense:

z(+) in IT is a (mild) solution if, for all ¢» € D(A),

(W, 2(t)) = (4, =) + /0 c (4 i(s)as (48)

that gives, for all 21,2 € N and i(+) € L ([0, +00); R), (22, i — 22,.4) = €' (21— 22).
Moreover it is easy to see that N is dense in M? and, fixed i(-) € L2 ([0, +);R),

loc
given z € M? and z, € N with z, E? z, that z,, ;(-) converges in II to a x, ;(
M

)
that is the solution we were looking for. O

Proof of Theorem 3.3
First of all we prove that ¢ € AF'S;. We divide the proof in two steps.
Step 1: We claim that

{ Las(t) = Amzg(t) + C*($las(®), ¢ >0 )
24(0) = z = (R(1), F(2))
has a unique solution in II.

To prove this first step we consider the solution i(-) of the following delay differential
equation
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it = (1-v) ( Sy i(8)(Qe90=) — n)ds) — v [0 ™ F(iy)(s)ds (50)
i(s)= 7 Vse[-T,0)

that has an absolute continuous solution i on [0,+00) (see for example Bensoussan
et al. (2007) page 287 for a proof). Then we consider the equation

{ Ly =Aw+C*(i(t), t>0

z(0) = z = (R(2), F(2)). (51)

We know, thanks to Theorem 3.1, that the only solution in II of (51) is z(t) :=
(y(t), F(iy)) for all t > 0, where y(-) is the solution of

y(t) =CGr);  (y(0),d0) = (R(), ©)-
We claim that z() is solution of (49) indeed

o(z(t) = y(t) — V(/O e™ F(i)(s)ds + y(ﬂ) (52)

-7
and so (by (50):

o(x(t)) = y(t) (1 — v) +i(t) — (1) ( /(

t—T)

i(s)(Qe00=s) — n)ds)

and by (51) we conclude that ¢(z(t)) = i(t) for all ¢ > 0 and so z(-) = z4(-) is a
solution of (49) and is in II. Moreover thanks to the linearity of ¢ it is easy to observe
that 24(-) is the unique solution in II.

Step 2: We claim that ¢(z4(-)) € Z;.

We have to prove that, for all ¢ > 0, ¢(z4(t)) = i(t) € [0,25(t)]. First we prove
that i(t) > 0, i.e. that v (fET e”x;(t)(s)ds +:r3)(t)) < acg)(t). By Step 1 we have

zg(t) = (R(it), F(i)) so, using the definitions of R and F and the Fubini Theorem
we get:

o [ emainas o) =v( [ oio (e e

_ 66T6(6+7r)7‘ + g 667"6—(6+7r)T dr
o4 o+

0
5
< 1/(/ Qit(r)<(e‘sr —e~°T) (1 — 767T(5+W)> dr)
-T ) + 7
0 _(sim , .
- V(l o T )T)R(zt) < R(iy) = %(t) (53)
where the last inequality follows by Hypothesis 3.3.

We prove now that, for all ¢ > 0, i(t) < 2 (t) i.e. that
v (acg(t) + fET e”sxé(t)(s)ds) > 0. Using the expressions of R and F as above

we get

29(t) + /_ e (Os)ds = Rl + / €™ P (iy) (s)ds = / Qilr+ )0()dr

-7 —

where the function ®: [-T,0] — R is given by

or _ —o6T 4 eér (€(5+7T)r o 67(6+7r)T) )

P —
re e =

Now by elementary computation we can prove that ®(—7) = 0 and ®(r) > 0 for all
r € (=T,0]. Using that i(t) > 0 for all ¢ > —T we have the claim.
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This concludes the proof of the fact that ¢ is an admissible strategy related to z.
The optimality can be proved using the same arguments used by Fabbri and Gozzi
(20084) in the proof of Theorem I1.2.13. O

Proof of Proposition 3.10
It is enough to try the solution ape®? in (42). We find:

0 0 B
ape™® = (/ Qel0tarqy —/ Qea”e‘STdr> ape®'® <7T p)
-T -T am

0 T
—|—aoealsy/ e”/ e~ 7§01t qrdr
-T -T

then
_ def 1 _—(4a)T\ _.—-oT L 1 _ar TP
1=3%(a;) = <Q6 T (1—e ) — Qe o (1—e ) p
0
+1// e(”_‘“)T&Qil (elartd)T _ g=(aa )Ty
_T 0+ ax
1 1 T —
_ _ —(6+a)T\ _ =0T * (1 _ ,—a1T P
<Qé+a1(1 e ) — Qe a1<1 e )>( o )
00 1 1
L 1 — o= (T+OTY _ j~(ar+6)T 1 _ o—(m—anTy )
+V§+a1<7r+5( ¢ )—e ﬂ*al( ¢ )

We can see that, when g > 0,
lim ¥(a1) =+o0 lim ¥(a;) =0

a1 ——0Q a1 ——+oo

then there exists a a; such that ¥(a;) = 1 and than such that age®" is the a BGP
for all positive ag. But from Theorem 3.4 (since we need bye?** — age®® = Ae9® for
all s > 0) we can deduce that the only possible choice for a BGP is that a; = b; = ¢,
then X(g) =1 and age? is a BGP for all positive ag. The related state evolution will

be y(s) = bpe?® where by = fET Qe — e 9T)aged%ds. O

Proof of Proposition 3.11
We have only to use the definitions and results of other sections, to substitute 7(s) =
ce9® (s € [=T,0)) and to solve the integrals. In particular we have to use (27) for (i),
(38) for (ii), (39) and (41) for (i), and (44) for (iv). O
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