

Micro and Nanotechnology from Glasgow

Some of the toolset.....

E-beam lithography Raith VB6 & Nanobeam NB5

EVG Nanoimprint

14 RIE / PECVD

Clustered RIE/PECVD/ALD/Auger

6 Metal dep tools

Furnace Tubes

5 SEMs

Bruker Icon AFM

Conductors

```
Can deposit and pattern conductors
Cu, Ni, Pt, Al, NiCr, Au, Ge, Ti, TaN, Pd, Mo, TiN, Nb, VO<sub>5</sub>
```

Insulators/dielectrics Can deposit and pattern insulators SiO₂, SiN, AI_2O_3 , HfO₂, AIN, diamond

Semiconductors

Can define patterns in a range of semiconductors Si, Ge, GaAs, InP, GaSb, GaN

The following are some examples of devices that have recently been produced in the JWNC using the extensive nanofabrication toolset

Some idea of lengthscales

Same scalebar size as previous image

Zoom in by ~400x

Zoom in by ~100x

Magneto Optical Traps and Paul Ion Taps

KNT & NPL Innovate UK Funding

C.C. Nshii et al. Nature Nano. 8, 321 (2013)

MEMS Gravimeter

R.P. Middlemiss et al. Nature 531, 614 (2016)

Aim: ≤10 ng/√Hz relative gravimeter with integrated squeezed light interferometer

40 ng/√**Hz gravimeter achieved**

Ge Plasmonics Challenges

Monolithic integrated plasmonic sensor

Agressive µ-bolometer scaling

Surface normal Ge QWIP ~ 10 μm

Cheap & integrable MIR Source

3 to 5 μm gas detection window

Ge & GeSn Lasers: Cavities

heaters

Separate n- and p-type few cm² substrates

- ≥ 10 µm photolith
- ≥ 20 µm SiGe SF₆, C₄F₈ ICP-RIE
- Ohmic metal (Ni or Ag(1% Sb), TiN, W / Cu)
- PECVD Si_xN_y
 - ≥ 0.5 µm photolith / EBL

Thermometers: Ti/Pd / Ti/Pt

- ≥ 10 µm photolith
- Metal bond pads (AI)
- Bumps: ≥ 10 µm photolith, In evaporation
- Flip-chip-bond: alignment ≤ 20 μm, 120 °C

Nanoscale force measurements

Nikolaj.Gadegaard@glasgow.ac.uk

Nanolithography of dots – an ideal model system

\mathcal{O}		

Nikolaj.Gadegaard@glasgow.ac.uk

Gadegaard et al., Microelec Eng 2003

Topographical control of stem cell fate

Nikolaj.Gadegaard@glasgow.ac.uk

Dalby and Gadegaard et al., Nature Materials 2007

Photon-counting technology

Photon detection in superconductors

Typically superconducting energy gap $\Delta \sim meV$.

=> Superconductors make extremely sensitive detectors from X-ray to Terahertz wavelengths.

One optical photon creates ~100–1000 excited electrons (superconducting gap ~2_meV for NbN). cf semiconductor – one optical photon creates one electron-hole pair, typical band gap 1-2 eV).

Superconducting nanowire single photon detector

Key Properties

- Wide spectral range (visible mid R)
- Operates at 4 K (not mK)
- Free running (no gating required
- Low dark counts
- Low timing jitter
- Short recovery time

A rapidly improving technology!

Original Concept: Gol'tsman et al Applied Physics Letters 79 705 (2001)

Topical Review: Natarajan et al Superconductor Science & Technology 25 063001 (2012) Open Access

Waveguide Integrated SNSPDs

Gold contacts and alignment marks

- E-beam lithography
- Metal evap & lift-off

10.0kV 14.0mm x50.0k SE(U)

Waveguide Integrated SNSPDs

Layer to layer alignment across 3 stages of e-beam lithography ± 20nm

RTD THz Oscillators from JWNC

- Polyimide process
- BCB Process
- CPW & Microstrip technologies
- NiCr resistors & SiNx MIM caps

165 GHz Oscillator

300 GHz Oscillator

Research to Small Scale Manufacture

Thermocouples on Si pyramids

Scale up: from single devices to wafers

75 mm wafer manufacture

100% of thermal AFM probes manufactured in Glasgow JWNC

Project 2 - Diamond Cantilvers and MEMS Andy McGlone (Phil Dobson, Manlio Tassieri & Julien Reboud)

Diamond cantilevers

www.nedds.co.uk

Electronic Diamond

Devices and Systems

University of Glasgow

Dry etching of diamond cantilevers

Diamond Etch

- Oxford Instruments System 100 RIE
- Ar/O2 gas mixture
- Etch rate ~ 22 nm/m

- Silicon Etch
- STS ICP
- C4F8 Mixed process
- KOH wet etch
- Minimal undercut

Critical features down to ~ 300nm

2.1 nanowire formation by ebl and etching

WP2

Capacitance (μ F/cm²)

0.5

0.4 0.3

0.2

0.1

0.0

-3

¹School of Engineering, University of Glasgow, Scotland, UK ²Tyndall National Institute, Cork, Irel*a*nd

Demonstration of III-V fins with vertical sidewalls using Cl₂/CH₄/H₂/O₂ dry etch chemistry in conjunction with digital etching for recovery of etch damage

Uthayasankaran Peralagu¹, Xu Li¹, Olesya Ignatova¹, Matthew Steer¹, Ian Povey², Paul Hurley² and Iain Thayne¹

¹School of Engineering, University of Glasgow, Glasgow, G12 8LT, United Kingdom ²Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland

CV-C

1 kHz 10 kHz

– 100 kHz •1 MHz

ST1.1.3 – Vertically etched nanowires - ALE

Lateral ALE of InGaAs - I

Iga160823b: HBr-Ar ALE for lateral etch at 20°C the original wire as shown in right hand side Surface midification step: HBr/Ar=25sccm/25sccm-ICP/Platen=500w/5w/4s/bias ~0v

Modified layer removal step: Ar=50sccm-ICP/Platen=2000w/5w/10s/bias 55v 30cycles

Iga160819a: wire etched in $Cl_2/CH_4/H_2/O_2$ chemistry with ICP etcher at 120°C for 1m55s

Process Module Development – Recent Progress (**New Data**)

	Alignment Markers			
)	HSQ patterning	Chemistry	SF_6/N_2	
	Nanowire Etch	Flow rates (sccm)	25/25	
		Power (W)	25	
	ALD High-k gate dielectric deposition	Pressure (mT)	10	
	ALD TiN gate metal deposition	Bias (V)	100	
)	Anisotropic gate etch for sidewall metal only	Time (s)	75s	
)	ALD dielectric deposition			
)	BCB spacer patterning		6	
)	BCB spacer etch back InGaAs Fin TiN			
)	Isotropic etch of dielectric to expose TiN gate			
	Patterning and etch back of BCB spacer, high-k			
	Mesa isolation			
	Substrate contact patterning			
	SU8 spacer patterning			
)	Gate metal bondpad patterning SU8200 10.0kV 13.7mm x10	NOK SE(U)	50	י י Onm

Process Module Development – Recent Progress (**New Data**)

Ç	Alignment Markers		
	HSQ patterning	Chemistry	SF ₆ /N ₂
Ţ	Nanawira Etab	Flow rates (sccm)	25/25
I	Nanowire Etch	Power (W)	100
	ALD High-k gate dielectric deposition	Pressure (mT)	10
\$	ALD TiN gate metal deposition	Bias (V)	300
	Anisotropic gate etch for sidewall metal only	Time (s)	40s

ALD dielectric deposition

