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1. Background

Air pollution has long been known to adversely affect
public health, in both the developed and developing world.

A recent report by the UK government estimates that
particulate matter alone reduces life expectancy by 6
months, with a health cost of £19 billion per year.

Epidemiological studies into the effects of air pollution
have been conducted since the 1990s, with one of the first
being that conducted by Schwartz and Marcus (1990) in
London.

Since 1990 a large number of studies have been conducted,
which collectively have investigated the short-term and
long-term health impact of air pollution.
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A brief history

The relationship between air pollution exposure and mortality
came to prominence during high air pollution episodes in:

the Meuse Valley,
Belgium in 1930;
Donora, Pennsylvania in
1948; and
London in December
1952.
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High pollution
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Government action

Clean air acts in 1956, 1968 and 1993

Prohibited and regulated pollution sources.
Set up ‘smoke control areas’ in which it was prohibited to
emit smoke from buildings or chimneys.

UK air quality strategy 1997, 2000, 2003 and 2007
Set target limits for annual or daily average concentrations
for a number of common pollutants.

Set up the Committee on the Medical Effects of Air
Pollution (COMEAP).
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Pollution is still a problem today
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Study designs

Pollution legislation continues to be informed by
epidemiological studies investigating both the short-term and
long-term health effects of air pollution exposure.

Acute studies investigate the effects resulting from a few
days of high exposure.

e.g. NMMAPS in the USA, Dominici et al
(2002) and APHEA in Europe, Katsouyanni
et al (2001).

Chronic studies investigate the cumulative effects of
exposure over numerous years

e.g. Dockery et al (1993) in six US cities, and
Elliot et al (2007) in the UK.
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Chronic studies

There are two main study designs when investigating the effects
of long-term exposure to air pollution.

Cohort studies e.g. The Six Cities study by Dockery et al
(1993) and the American Cancer study by Pope et
al (2002), which relate average air pollution
concentrations to the health status of a large
pre-defined cohort of people.

Ecological studies e.g. Elliot et al (2007) and Lee et al (2009),
which relate average air pollution concentrations
in contiguous small areas (such as electoral
wards), against yearly numbers of health events
from the population living in that area.
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Ecological study design

Small area studies have an ecological design, because the
data relate to populations living in a set of n
non-overlapping areal units, rather than to individuals.

Examples of such studies include Jerrett et al. (2005),
Elliott et al. (2007), Lee et al. (2009) and Greven et al.
(2011).

The health data are denoted by Y = (Y1, . . . ,Yn) and
E = (E1, . . . ,En), which are the observed and expected
numbers of disease cases in each areal unit over a year.

The expected numbers of cases are computed using
external standardisation, based on age and sex specific
disease rates.
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Example - Greater Glasgow, Scotland

Respiratory hospitalisation risk - SIRk = Yk/Ek.
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Covariate data

The covariates required for such a study are contained in an
n× p matrix X = (x1, . . . , xn), and come in two main types:

1 Annual average air pollution concentrations for each small
area. Typically, these are obtained from atmospheric
computer models, as the network of monitoring sites is not
dense at the small area scale.

2 Data on confounding factors, such as socio-economic
deprivation which acts as a proxy for risk inducing
behaviour such as smoking.
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Example - Greater Glasgow, Scotland

Modelled particulate matter concentrations (PM10).
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Modelling

A Poisson Generalised Linear Mixed Model is given by:

Yk ∼ Poisson(EkRk),

log(Rk) = xT
k β + φk + θk,

where

Rk quantifies disease risk in area k, so Rk = 1.2 means a
20% increased risk of disease.

φ = (φ1, . . . , φn) are random effects to model residual
spatial autocorrelation not captured by the covariates.

θ = (θ1, . . . , θn) are random effects to model non-spatial
variation (overdispersion) where θk ∼ N(0, σ2).

A Bayesian approach is adopted, using MCMC simulation.
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Modelling spatial correlation

Conditional Autoregressive (CAR, Besag et al. (1991)) models
are typically specified to capture the spatial autocorrelation, and
can be written as a set of n univariate full conditional
distributions f (φk|φ−k) for k = 1, . . . , n as:

φk|φ−k, τ
2,W ∼ N

(∑n
i=1 wkiφi∑n

i=1 wki
,

τ 2∑n
i=1 wki

)
.

Here W = (wki) is a binary n× n neighbourhood matrix, with
wki = 1, denoted k ∼ i if areal units (k, i) share a common
border and wki = 0 otherwise. The combination φk + θk is
known as the convolution or BYM CAR model.
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Limitations - random effects
The BYM CAR prior forces the sum φk + θk to be globally
spatially smooth, as the relative sizes of φk and θk are
controlled globally by the relative sizes of (τ 2, σ2).

Therefore as health data are typically spatially correlated,
the random effects sum φk + θk is typically spatially
smooth.

This leads to problems of collinearity with covariates that
are also smooth such as air pollution, as was illustrated by
Reich et al. (2006) and Hughes and Haran (2013).

Furthermore, the residual spatial structure is unlikely to be
globally smooth, because the disease data (e.g. the SIR)
are not globally smooth so the residuals after removing
covariate effects are also unlikely to be.
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SIR again - localised smoothness
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Limitations - Pollution data

The pollution data are typically estimated concentrations from a
dispersion model, which has the following limitations:

1 They are assumed to be true known measurements where
as they are in fact subject to error and potential biases.

2 The uncertainty due to them being estimates rather than
known data should be accounted for in the model.

3 They are estimated on a regular grid and ad-hoc
approaches are typically used to re-align them to the areal
units for which health data are available.

Thus spatio-temporal data fusion methods should be used to
combine the modelled data with the available monitoring data.
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Research aims

In this talk we propose a solution to the first of these
problems, namely the insufficient flexibility of the globally
smooth BYM CAR prior.

Our extension is an extension of CAR models to allow for
localised spatial smoothness in the random effects surface,
that is, subregions of spatial smoothness separated by
step-changes.

The other known problem with the BYM model is that
only the sum of the two random effects φk + θk are
identifiable from the data and not the individual
components. Thus we only utilise a single set of random
effects φ in our methodology.
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2. Methodology - motivation

The CAR model can also be written in a multivariate form as

φ ∼ N(0, τ 2Q(W)−),

where Q(W) = diag(W1)−W, is a singular precision matrix.
Then from multivariate Gaussian theory we have that:

Corr[φk, φj|φ−kj,W] =
wkj√

(
∑n

i=1 wki)(
∑n

i=1 wji)

So that if wkj = 1 (corresponding to adjacent areal units) then
the random effects (φk, φj) are partially correlated, while if
wkj = 0 (corresponding to non-adjacent areal units) then (φk, φj)
are conditionally independent.
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Motivation continued

Therefore we treat the setW = {wkj|k ∼ j, k > j} as
binary random variables, rather than wkj being fixed at 1.

This is because if wkj = wjk = 1 then (φk, φj) are correlated
and are smoothed over, where as if wkj = wjk = 0 they are
conditionally independent and are not smoothed over.

This allows for smoothness in the random effects surface
between some pairs of areal units, while between others
there can be a step change.

We follow the terminology of graphical models and refer
to wkj ∈ W as edges, and define any edge wkj that equals
zero as having been removed.
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General approach

Our methodological innovation is a Localised Conditional
AutoRegressive (LCAR) prior, which decomposes the joint
distribution for an extended set of random effects φ̃ and the set
of edgesW as

f (φ̃,W) = f (φ̃|W)f (W)

Note, a standard CAR model consists of the first of these
distributions f (φ|W), whileW is assumed fixed and hence
does not have a prior distribution.
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Problem

The simplest modelling extension would be to specify
independent Bernoulli priors for the edges inW , that is

f (W) =
∏
k∼j

Bernoulli(wkj|pkj).

However, this leads to overparameterisaton, as the number of
partial correlation parameters inW is much larger than the
number of data points n. For example, in the Glasgow
motivating example, we have n = 271 and |W| = 718.

Also, you are attempting to estimate a flexible spatial
autocorrelation structure from only one realisation of the spatial
process!

1. Background and Motivation 2. Methodology 3. Simulation study 4. Case study 5. Conclusions 23/50



Existing solutions

This area of research is linked to the area of spatial
epidemiology known as Wombling, whose aim is to identify
boundaries (step changes) in the spatial pattern of disease risk.

Lu et al. (2007) proposed a logistic regression model for
the elements inW , where the covariate measured the
dissimilarity between areal units (Ak,Aj).

Lee and Mitchell (2013) proposed an iterative algorithm in
whichW is updated deterministically based on the joint
posterior distribution of the remaining model parameters.

In contrast in an ecological regression context Hughes and
Haran (2013) propose a smoothing model orthogonal to the
covariates that does not treatW as random.
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Proposed methodology

We describe our proposed methodology in two stages:

We describe an extended CAR model f (φ̃|W) conditional
on a fixed neighbourhood structureW .

We describe the prior distribution used for the
neighbourhood structure, that is f (W).
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Prior distribution - f (φ̃|W)

Recall the standard CAR prior is given by

φk|φ−k, τ
2,W ∼ N

(∑n
i=1 wkiφi∑n

i=1 wki
,

τ 2∑n
i=1 wki

)
.

It is clearly inappropriate ifW is random, because one could
get
∑n

i=1 wki = 0, leading to an infinite variance.

It also corresponds to an improper joint distribution for φ
(singular precision matrix), which could lead to problems in
updatingW due to the computation of the determinant.
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Therefore we introduce φ̃ = (φ, φ∗), where φ∗ is a global
random effect that prevents any unit from having no edges. The
corresponding (n + 1)× (n + 1) neighbourhood matrix is given
by

W̃ =

[
W w∗
wT
∗ 0

]
,

where w∗ = (w1∗, . . . ,wn∗), wk∗ = I[
∑

i∼k(1− wki) > 0].

Essentially, wk∗ = 1 if at least one of the edges relating to areal
unit k has been removed.
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We propose the extended CAR prior φ̃ ∼ N(0, τ 2Q(W̃, ε)−1),
where

Q(W̃, ε) = diag(W̃1)− W̃ + εI.

This is a CAR prior for φ̃, except for the addition of εI, which
ensures the matrix is invertible and thus the determinant is
non-zero when calculating the acceptance probability forW .
ε = 0.001 is used here, but the model is robust to different
choices.
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The full conditional distributions are given by:

φk|φ̃−k ∼ N
(∑n

i=1 wkiφi + wk∗φ∗∑n
i=1 wki + wk∗ + ε

,
τ 2∑n

i=1 wki + wk∗ + ε

)
.

and

φ∗|φ̃−∗ ∼ N
( ∑n

i=1 wi∗φi∑n
i=1 wi∗ + ε

,
τ 2∑n

i=1 wi∗ + ε

)
.
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Prior distribution - f (W)

The dimensionality ofW is NW = 1TW1/2, and as each
edge is binary the sample space has size 2NW .

Previous studies have shown that modelling each element
inW separately results in weakly identifiable parameters.

Therefore we treatW as a single random quantity, and
propose the following prior for W̃;

W̃ ∼ Discrete Uniform(W̃(0), W̃(1), . . . , W̃(NW )).

Candidate W̃(j) has j edges retained in the model (i.e. j
elements inW equal 1), so (W̃(0), W̃(NW )) correspond to
independence and CAR priors respectively.
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The size and dimensionality of the sample space forW is
large, and Li et al. (2011) have shown that treating all of
these elements as binary random quantities leads to them
being weakly identifiable.

Therefore some form of data reduction is required, and the

W̃ ∼ Discrete Uniform(W̃(0), W̃(1), . . . , W̃(NW )),

prior reduces the sample space to size NW + 1 rather than
2NW , and its dimensionality reduces from NW to 1.

This leads to the question of how should the sample states
W̃(0), W̃(1), . . . , W̃(NW ) be chosen?
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Eliciting (W̃(0), W̃(1), . . . , W̃(NW))

We propose eliciting (W̃(0), W̃(1), . . . , W̃(NW )) from disease
data prior to the study period, because it should have a
similar spatial structure to the response.

Let ((Yp
1,E

p
1), . . . , (Yp

r ,Ep
r )) denote disease data for the r

years prior to the study.

The study data have expectation E[Y] = E exp(Xβ + φ),
which is equivalent to ln (E[Y]/E) = Xβ + φ. Thus as
φ ∼ N(0, τ 2Q(W̃, ε)−1

1:n) we make the approximation:

φp
j = ln

[Yp
j

Ep
j

]
≈ ln

[
Y
E

]
∼approx N(Xβ, τ 2Q(W̃, ε)−1

1:n).
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Elicitation algorithm

1 Start at W̃(NW ) which has all edges retained in the model
(wkj = 1) and corresponds to the ordinary CAR prior for
strong spatial smoothing.

2 For j = NW , . . . , 1 move from W̃(j) to W̃(j−1) by removing a
single edge fromW (i.e. by setting an element inW equal
to zero). This corresponds to localised spatial smoothing

3 When j = 0 W̃(0) contains no edges (wkj = 0), and
corresponds to non-spatial smoothing.
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Moving from W̃(j) to W̃(j−1)

At step j compute the joint approximate Gaussian
log-likelihood for (φp

1, . . . ,φ
p
r ) given by

ln[f (φp
1, . . . ,φ

p
r |W̃(∗))] =

r∑
j=1

ln[N(φp
j |Xβ̂, τ̂

2Q(W̃∗, ε)−1
1:n)],

≈ r
2

ln(|Q(W̃∗, ε)1:n|)−
nr
2

ln(τ̂ 2)

− 1
2τ̂ 2

r∑
j=1

(φp
j − Xβ̂)TQ(W̃∗, ε)1:n(φ

p
j − Xβ̂),

for all matrices W̃(∗) that differ from W̃(j) by having one
additional edge removed. Then set W̃(j−1) equal to the value of
W̃(∗) that maximises the log-likelihood.
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Overall model

The overall model is given by

Yk|Ek,Rk ∼ Poisson(EkRk) for k = 1, . . . , n,
ln(Rk) = xT

kβ + φk,

φ̃ ∼ N(0, τ 2Q(W̃, ε)−1),

W̃ ∼ Discrete Uniform(W̃(0), W̃(1), . . . , W̃(NW )),

βj ∼ N(0, 1000) for j = 1, . . . , p,
τ 2 ∼ Uniform(0, 1000).

This approach thus produces a random effects model for
localised spatial smoothing, which by construction will likely
favour spatial structures that are not collinear to the covariates.

1. Background and Motivation 2. Methodology 3. Simulation study 4. Case study 5. Conclusions 35/50



3. Simulation study

Five hundred data sets were generated for Greater Glasgow
under a number of different scenarios.

Each data set consisted of study data and three years of
prior data for the LCAR model.

For each data set the log-risk surface was generated as a
linear combination of a spatially smooth covariate
(representing air pollution) and localised residual spatial
structure (to be modelled by the random effects).

The localised residual spatial structure was generated from
a multivariate Gaussian distribution with a spatially
smooth variance and a piecewise constant mean, the
template for which is shown on the next slide.
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Generating localised spatial structure

The piecewise constant mean below is multiplied by M.

650000

660000

670000

680000

220000 230000 240000 250000 260000 270000

0 5000 m

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

1. Background and Motivation 2. Methodology 3. Simulation study 4. Case study 5. Conclusions 37/50



Study design

The LCAR model was compared against the commonly
used BYM model, as well as the localised smoothing
proposal of Lee and Mitchell (2013) and the orthogonal
smoothing proposal of Hughes and Haran (2013).

The constant M is set to M = 0.5, 1, 1, 5, where larger
values represent more localised rather than global spatial
smoothness.

Disease prevalence E is also changed from (a) [10-25], (b)
[50-100], (c) [150,200].

Model performance was compared by the Root Mean
Square Error (RMSE) of the estimated regression
parameter and the coverage probability of its 95% credible
interval.
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RMSE values for β by (M,E)
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1. Background and Motivation 2. Methodology 3. Simulation study 4. Case study 5. Conclusions 39/50



Coverage probabilities for β by (M,E)

E M
Model

a b c d
0.5 94.2 92.2 92.8 73.8

[10, 25] 1 94.2 92.8 91.0 53.0
1.5 94.4 93.0 80.0 32.8
0.5 92.6 90.2 86.6 46.2

[50, 100] 1 94.0 89.8 73.8 28.0
1.5 90.8 92.8 79.0 20.4
0.5 94.2 89.6 78.2 31.4

[150, 200] 1 90.2 85.8 67.0 18.0
1.5 92.4 93.0 81.4 12.6

a - BYM, b - LCAR, c - Lee et al. (2013), and d - Hughes et al. (2013)
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4. Case study

The methodology was motivated by a study estimating the
effects of air pollution on hospitalisation due to respiratory
disease in Greater Glasgow, Scotland in 2010.

The prior distribution for the spatial structure of the LCAR
model was elicited using three years of respiratory
hospitalisation data between 2007 and 2009.

Modelled concentrations of nitrogen dioxide (NO2), and
particulate matter (PM2.5 and PM10) were available for
2009, along with a measure of income deprivation, a major
confounder in spatial ecological studies.

The pollutants were included in separate models to avoid
issues of collinearity, and in all cases inference was based
on 150,000 samples obtained from 3 Markov chains.
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Results 1

The table shows the DIC values as well as relative risks for a one
standard deviation increase in the yearly average concentrations,
which are: CO (0.0076 mgm−3), NO2 (5.0µgm−3), PM2.5
(1.1µgm−3), PM10 (1.5µgm−3).

Model
a b c d

DIC 2124.0 2112.4 2115.8 2467.6
CO 0.997 (0.954, 1.038) 1.011 (0.973, 1.045) 0.998 (0.959, 1.036) 1.021 (1.006, 1.035)
NO2 1.036 (0.998, 1.072) 1.040 (1.012, 1.067) 1.033 (1.003, 1.065) 1.043 (1.028, 1.059)
PM2.5 1.029 (0.991, 1.067) 1.039 (1.007, 1.071) 1.026 (0.989, 1.063) 1.035 (1.021, 1.050)
PM10 1.032 (0.994, 1.071) 1.040 (1.007, 1.073) 1.028 (0.993, 1.064) 1.034 (1.021, 1.048)
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Results 2 - Localised spatial structure

The posterior distribution for the number of edges removed (i.e
wkj ∈ W that equal zero).
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5. Conclusions

1 The LCAR prior proposed here has the flexibility to
capture both sub-regions of spatial correlation and step
changes in the random effects surface.

2 By construction the candidate localised smoothing
structures are unlikely to be collinear to the fixed effects,
which should eliminate the problems identified by Reich et
al. (2006).

3 The improvements in the estimation of the fixed effects can
be substantial, as the percentage reductions in RMSE
between the BYM and LCAR models ranged between
4.5% and 45.8% in the simulation study presented here.

4 The models proposed by Lee and Mitchell (2013) and
Hughes and Haran (2013) have issues of poor coverage.
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Further work

Future work will extend this model into the
spatio-temporal domain, which with replication of the
spatial process over time will enable modelling to be
undertaken without such vast dimension reduction.

The concept of localised spatial smoothing is also useful in
the related fields of disease mapping and Wombling,
whose aims are to identify clusters of high-risk areas and
locations of step-changes in disease risk.

We also have monthly air pollution and health data for
England by local authority for 10 years, which will be one
of the largest scale studies into the long-term health impact
of air pollution.

1. Background and Motivation 2. Methodology 3. Simulation study 4. Case study 5. Conclusions 45/50



A spatio-temporal extension - tentative steps

Letting t denote year, a spatio-temporal extension to the Poisson
log-linear model we are currently working on is given by

Ykt ∼ Poisson(EktRkt),

log(Rkt) = xT
ktβ + φkt,

φt = (φ1t, . . . , φnt) ∼ N(αφt−1, τ
2Q(W)−1),

φ1 ∼ N(0, τ 2Q(W)−1),

where Q(W) = diag(W1)−W + εI.
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In this spatio-temporal context we assume W is constant
over time, so that the temporal replication is used to
estimate W without having to make the vast simplifying
assumptions used in the purely spatial case.

Also, we model each element inW as a continuous
quantity in the range (0, 1) rather than as a binary quantity,
as the normalising constant of the model below is easy to
compute.

Then a second stage localised smoothing model is
specified for the transformed weights

νkj = log
(

wkj

1− wkj

)
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The CAR prior proposed by Leroux et al. (1999) is proposed
for ν, the vector comprising {νkj|k ∼ j}, which has the general
form

ν ∼ N(0, σ2[ρ(diag(M1))− (1− ρ)I]−1)

where M is the neighbourhood matrix for the set of edges. Thus

1 If ρ = 1 the νkj are spatially smooth hence the locations of
step changes are spatially smooth.

2 If ρ = 0 the νkj are independent hence the locations of step
changes exhibit no spatial structure.
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Example - Model behaviour ρ = 0
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Example - Model behaviour ρ = 1
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