On generating a flexible class of anisotropic spatial models using Gaussian predictive processes Sujit Sahu

Southampton

http://www.soton.ac.uk/~sks/ Co-author: Sabyasachi Mukhopadhyay

Rio, ISI 2015

On generating a flexible class of anisotropic spatial models using Gaussian predictive processes Sujit Sahu

Southampton

http://www.soton.ac.uk/~sks/ Co-author: Sabyasachi Mukhopadhyay

Rio, ISI 2015

1

• Models for the covariance function

- Types of anisotropy
- How can predictive processes be used to generate anisotropic models?
- Examples:
 - Modelling scallop abundance data
 - Modelling UK air pollution data for five years
- Discussion

- Models for the covariance function
- Types of anisotropy
- How can predictive processes be used to generate anisotropic models?
- Examples:
 - Modelling scallop abundance data
 - Modelling UK air pollution data for five years
- Discussion

- Models for the covariance function
- Types of anisotropy
- How can predictive processes be used to generate anisotropic models?

• Examples:

- Modelling scallop abundance data
- Modelling UK air pollution data for five years

• Discussion

- Models for the covariance function
- Types of anisotropy
- How can predictive processes be used to generate anisotropic models?

• Examples:

- Modelling scallop abundance data
- Modelling UK air pollution data for five years

Discussion

- Models for the covariance function
- Types of anisotropy
- How can predictive processes be used to generate anisotropic models?
- Examples:
 - Modelling scallop abundance data
 - Modelling UK air pollution data for five years

• Discussion

- Models for the covariance function
- Types of anisotropy
- How can predictive processes be used to generate anisotropic models?
- Examples:
 - Modelling scallop abundance data
 - Modelling UK air pollution data for five years

• Discussion

- Models for the covariance function
- Types of anisotropy
- How can predictive processes be used to generate anisotropic models?
- Examples:
 - Modelling scallop abundance data
 - Modelling UK air pollution data for five years
- Discussion

Example: UK air pollution data modelling

- Map of 323 local authorities in England for which we have health outcome data.
- Red dots define the corners of the 12 km square grid cells where we have AQUM output.
- Blue dots represent the 142 AURN air-quality monitoring sites.

- Modelling setup: Suppose that we have random variables Y(s₁),..., Y(s_n) where each s_i denotes a particular location.
- In general, consider a real-valued spatial process Y(s), where s ∈ D and D is the study region, usually a sub-space of R², England in the above example!
- There are 3 main concepts in spatial statistics (in the Matheron School):
 - Stationarity
 - 2 Variogram
 - Isotropy

• No formal model based inference for Y(s) yet.

- Modelling setup: Suppose that we have random variables Y(s₁),..., Y(s_n) where each s_i denotes a particular location.
- In general, consider a real-valued spatial process Y(s), where s ∈ D and D is the study region, usually a sub-space of R², England in the above example!
- There are 3 main concepts in spatial statistics (in the Matheron School):
 - Stationarity
 - 2 Variogram
 - Isotropy

• No formal model based inference for Y(s) yet.

- Modelling setup: Suppose that we have random variables Y(s₁),..., Y(s_n) where each s_i denotes a particular location.
- In general, consider a real-valued spatial process Y(s), where s ∈ D and D is the study region, usually a sub-space of R², England in the above example!
- There are 3 main concepts in spatial statistics (in the Matheron School):
 - Stationarity
 - 2 Variogram
 - Isotropy

• No formal model based inference for Y(s) yet.

- Modelling setup: Suppose that we have random variables
 Y(s₁),..., Y(s_n) where each s_i denotes a particular location.
- In general, consider a real-valued spatial process Y(s), where s ∈ D and D is the study region, usually a sub-space of R², England in the above example!
- There are 3 main concepts in spatial statistics (in the Matheron School):
 - Stationarity
 Variogram
 Isotropy

• No formal model based inference for Y(s) yet.

- Modelling setup: Suppose that we have random variables
 Y(s₁),..., Y(s_n) where each s_i denotes a particular location.
- In general, consider a real-valued spatial process Y(s), where s ∈ D and D is the study region, usually a sub-space of R², England in the above example!
- There are 3 main concepts in spatial statistics (in the Matheron School):

• No formal model based inference for Y(s) yet.

- Modelling setup: Suppose that we have random variables
 Y(s₁),..., Y(s_n) where each s_i denotes a particular location.
- In general, consider a real-valued spatial process Y(s), where s ∈ D and D is the study region, usually a sub-space of R², England in the above example!
- There are 3 main concepts in spatial statistics (in the Matheron School):
 - Stationarity
 Variogram
 Isotropy

• No formal model based inference for Y(s) yet.

- Modelling setup: Suppose that we have random variables
 Y(s₁),..., Y(s_n) where each s_i denotes a particular location.
- In general, consider a real-valued spatial process Y(s), where s ∈ D and D is the study region, usually a sub-space of R², England in the above example!
- There are 3 main concepts in spatial statistics (in the Matheron School):
 - Stationarity
 - 2 Variogram
 - Isotropy

• No formal model based inference for $Y(\mathbf{s})$ yet.

Stationarity

• Suppose our spatial process has a mean, $\mu(\mathbf{s}) = E(Y(\mathbf{s}))$, and that the variance of $Y(\mathbf{s})$ exists for all \mathbf{s} .

- The process is said to be strictly stationary (also called strongly stationary) if, for any given n ≥ 1, any set of n sites s₁,..., s_n and any h the distribution of Y(s₁),..., Y(s_n) is the same as that of Y(s₁ + h),..., Y(s_n + h).
- A less restrictive condition is given by weak stationarity (also called second-order stationarity): A process is weakly stationary if μ(s) = μ and Cov(Y(s), Y(s + h)) = C(h) for all h such that s and s + h both lie in D.

- Suppose our spatial process has a mean, μ(s) = E(Y(s)), and that the variance of Y(s) exists for all s.
- The process is said to be strictly stationary (also called strongly stationary) if, for any given n ≥ 1, any set of n sites s₁,..., s_n and any h the distribution of Y(s₁),..., Y(s_n) is the same as that of Y(s₁ + h),..., Y(s_n + h).
- A less restrictive condition is given by weak stationarity (also called second-order stationarity): A process is weakly stationary if μ(s) = μ and Cov(Y(s), Y(s + h)) = C(h) for all h such that s and s + h both lie in D.

- Suppose our spatial process has a mean, μ(s) = E(Y(s)), and that the variance of Y(s) exists for all s.
- The process is said to be strictly stationary (also called strongly stationary) if, for any given $n \ge 1$, any set of *n* sites $\mathbf{s}_1, \ldots, \mathbf{s}_n$ and any **h** the distribution of $Y(\mathbf{s}_1), \ldots, Y(\mathbf{s}_n)$ is the same as that of $Y(\mathbf{s}_1 + \mathbf{h}), \ldots, Y(\mathbf{s}_n + \mathbf{h})$.
- A less restrictive condition is given by weak stationarity (also called second-order stationarity): A process is weakly stationary if μ(s) = μ and Cov(Y(s), Y(s + h)) = C(h) for all h such that s and s + h both lie in D.

Notes on Stationarity

- Weak stationarity says that the covariance between the values of the process at any two locations s and s + h can be summarized by a covariance function C(h) (sometimes called a covariogram), and this function depends only on the separation vector h.
- Note that with all variances assumed to exist, strong stationarity implies weak stationarity.
- The converse is not true in general, but it does hold for Gaussian processes

Notes on Stationarity

- Weak stationarity says that the covariance between the values of the process at any two locations s and s + h can be summarized by a covariance function C(h) (sometimes called a covariogram), and this function depends only on the separation vector h.
- Note that with all variances assumed to exist, strong stationarity implies weak stationarity.
- The converse is not true in general, but it does hold for Gaussian processes

- Weak stationarity says that the covariance between the values of the process at any two locations s and s + h can be summarized by a covariance function C(h) (sometimes called a covariogram), and this function depends only on the separation vector h.
- Note that with all variances assumed to exist, strong stationarity implies weak stationarity.
- The converse is not true in general, but it does hold for Gaussian processes

• Semi-Variogram is defined as:

$$\gamma(\mathbf{h}) = \frac{1}{2} \operatorname{var}(Y(\mathbf{s} + \mathbf{h}) - Y(\mathbf{s}))$$

• Simple calculation yields

 $2\gamma(\mathbf{h}) = 2\left[C(\mathbf{0}) - C(\mathbf{h})\right]$

So given the covariance function C(·) we can determine the semivariogram.

But the converse is not true, we can add ±*a* to C(·) and obtain the same γ(·).

• Semi-Variogram is defined as:

$$\gamma(\mathbf{h}) = \frac{1}{2} \operatorname{var}(Y(\mathbf{s} + \mathbf{h}) - Y(\mathbf{s}))$$

• Simple calculation yields

 $2\gamma(\mathbf{h}) = 2\left[C(\mathbf{0}) - C(\mathbf{h})\right]$

 So given the covariance function C(·) we can determine the semivariogram.

But the converse is not true, we can add ±*a* to C(·) and obtain the same γ(·).

• Semi-Variogram is defined as:

$$\gamma(\mathbf{h}) = \frac{1}{2} \operatorname{var}(Y(\mathbf{s} + \mathbf{h}) - Y(\mathbf{s}))$$

Simple calculation yields

$$2\gamma(\mathbf{h}) = 2\left[C(\mathbf{0}) - C(\mathbf{h})\right]$$

• So given the covariance function *C*(·) we can determine the semivariogram.

But the converse is not true, we can add ±*a* to C(·) and obtain the same γ(·).

• Semi-Variogram is defined as:

$$\gamma(\mathbf{h}) = \frac{1}{2} \operatorname{var}(Y(\mathbf{s} + \mathbf{h}) - Y(\mathbf{s}))$$

Simple calculation yields

$$2\gamma(\mathbf{h}) = 2\left[C(\mathbf{0}) - C(\mathbf{h})\right]$$

- So given the covariance function C(·) we can determine the semivariogram.
- But the converse is not true, we can add ±a to C(·) and obtain the same γ(·).

- If the semivariogram γ(h) depends upon the separation vector only through its length ||h|| then we say that the process is isotropic.
- For an isotropic process, γ(h) is a real-valued function of a univariate argument, and can be written as γ(||h||).
- Isotropic processes are popular because of their simplicity, interpretability, and because a number of relatively simple parametric forms are available as candidates for $\gamma(\cdot)$.

- If the semivariogram γ(h) depends upon the separation vector only through its length ||h|| then we say that the process is isotropic.
- For an isotropic process, γ(h) is a real-valued function of a univariate argument, and can be written as γ(||h||).
- Isotropic processes are popular because of their simplicity, interpretability, and because a number of relatively simple parametric forms are available as candidates for $\gamma(\cdot)$.

- If the semivariogram γ(h) depends upon the separation vector only through its length ||h|| then we say that the process is isotropic.
- For an isotropic process, γ(h) is a real-valued function of a univariate argument, and can be written as γ(||h||).
- Isotropic processes are popular because of their simplicity, interpretability, and because a number of relatively simple parametric forms are available as candidates for γ(·).
 Sujit Sahu

- If the semivariogram γ(h) depends upon the separation vector only through its length ||h|| then we say that the process is isotropic.
- For an isotropic process, γ(h) is a real-valued function of a univariate argument, and can be written as γ(||h||).
- Isotropic processes are popular because of their simplicity, interpretability, and because a number of relatively simple parametric forms are available as candidates for γ(·).
 Sujit Sahu

The most common covariance function

The Matérn correlation function is given by:

$$C(t;\phi,\nu)=\frac{1}{2^{\nu-1}\Gamma(\nu)}(2\sqrt{\nu}\phi t)^{\nu}K_{\nu}(2\sqrt{\nu}\phi t),\quad \phi>0,\nu>0,$$

where $\Gamma(\nu)$ is the standard gamma function, K_{ν} is the modified Bessel function of second kind with order ν , and $t = ||\mathbf{h}||$ is the distance between two sites.

- The parameter φ controls the rate of decay of the correlation as the distance t increases
- The parameter v controls smoothness of the random field $Y(\mathbf{s})$.
 - $v = 1/2 \implies C(t) = \sigma^2 \exp(-\phi t), t > 0$; Exponential Covariance Function

•
$$v = 3/2, C(t) = \sigma^2(1 + \phi t) \exp(-\phi t), t > 0.$$

• $\nu \to \infty \implies C(t) = \sigma^2 \exp(-\phi^2 t^2), t > 0$; Gaussian

Exponential Covariance Function

- This is by far the most popular choice for modelers.
- The correlation between two points distance *t* apart is exp(-φt).
- The *effective range*, *t*₀, as the distance at which this correlation becomes negligible, equal to 0.05.

Setting

$$\begin{array}{rcl} \exp(-\phi t_0) &=& 0.05\\ \implies t_0 &=& -\log(0.05)/\phi\\ \implies t_0 &\approx& 3/\phi \end{array}$$

since log(0.05) \approx -3.

Nugget

• Recall
$$\gamma(\mathbf{h}) = \gamma(\|\mathbf{h}\|) = C(\mathbf{0}) - C(\|\mathbf{h}\|).$$

- So γ(0) = 0. But often there are micro-scale variation or measurement error even at very small distances.
- To tackle that we define the nugget

$$\tau^2 \equiv \lim_{t \to 0^+} \gamma(t).$$

• This introduces a discontinuity at 0 for the covariogram $\gamma(t)$.

- What happens to $\gamma(t)$ when $t \to \infty$?
- This asymptotic value is called the sill.
- In our notation sill is given by $\tau^2 + \sigma^2$.
- The sill minus the nugget, σ^2 , is called the partial sill.
- The effective range is the smallest distance for which the semivariogram achieves the asymptotic sill.

Three closed form Matérn covariograms:

- Exponential: γ(t) = τ² + σ²(1 exp(-φt)).
 Gaussian: γ(t) = τ² + σ²(1 exp(-φ²t²)).
- Solution Matérn with v = 1.5. $\gamma(t) = \tau^2 + \sigma^2 (1 (1 + \phi t) \exp(-\phi t))$.

What is anisotropy?

- Anisotropy is opposite of isotropy. For example,
 - If the variogram depends on angle it is angular anisotropy.
 - Similarly, sill and range anisotropy.
 - Geometric anisotropy is obtained by by stretching of an isotropic model: $\gamma(h) = \gamma_0(\sqrt{\mathbf{h}'Q\mathbf{h}})$ where $\gamma_0(\cdot)$ is isotropic and Q is a positive definite matrix.
 - Zonal anisotropy. Variogram only depends on some components of the vector h. Also called stratified anisotropy.
- See Chapter 2 of Chilès and Delfiner (2012).

- Answer depends on what type of anisotropy (e.g. geometric or zonal) we want.
- It is difficult to decide the type of anisotropy when all we have available is a realisation y(s₁),..., y(s_n) along with the locations s₁,..., s_n).
- Hence it is difficult to specify a flexible covariance function $C(\dot{)}$.
- Further problem arises due to the positive definiteness requirement of the implied covariance matrix of *any n* realisations *Y*(**s**).

- Answer depends on what type of anisotropy (e.g. geometric or zonal) we want.
- It is difficult to decide the type of anisotropy when all we have available is a realisation y(s₁),..., y(s_n) along with the locations s₁,..., s_n).
- Hence it is difficult to specify a flexible covariance function $C(\dot{)}$.
- Further problem arises due to the positive definiteness requirement of the implied covariance matrix of *any n* realisations *Y*(**s**).

- Answer depends on what type of anisotropy (e.g. geometric or zonal) we want.
- It is difficult to decide the type of anisotropy when all we have available is a realisation y(s₁),..., y(s_n) along with the locations s₁,..., s_n).
- Hence it is difficult to specify a flexible covariance function C(j.
- Further problem arises due to the positive definiteness requirement of the implied covariance matrix of *any n* realisations *Y*(**s**).

- Answer depends on what type of anisotropy (e.g. geometric or zonal) we want.
- It is difficult to decide the type of anisotropy when all we have available is a realisation y(s₁),..., y(s_n) along with the locations s₁,..., s_n).
- Hence it is difficult to specify a flexible covariance function C().
- Further problem arises due to the positive definiteness requirement of the implied covariance matrix of *any n* realisations *Y*(**s**).

- Large literature on constructing non-stationary models: Sampson and Guttorp (1992), Schmidt and O'hagan (2003).
- Kernel mixing: Higdon (1998), Paciorek and Schervish (2006).
- Spatially varying cross-covariance models. Guhaniyogi et al. (2013).
- Spatial basis functions and non-stationary Matérn covariance functions. Katzfuss (2013) and Konomi et al. (2014).
- More comprehensive literature citations in Section 3.2 of the Bayesian modelling book on spatial statistics: Banerjee, Carlin and Gelfand (2015).

- Large literature on constructing non-stationary models: Sampson and Guttorp (1992), Schmidt and O'hagan (2003).
- Kernel mixing: Higdon (1998), Paciorek and Schervish (2006).
- Spatially varying cross-covariance models. Guhaniyogi et al. (2013).
- Spatial basis functions and non-stationary Matérn covariance functions. Katzfuss (2013) and Konomi et al. (2014).
- More comprehensive literature citations in Section 3.2 of the Bayesian modelling book on spatial statistics: Banerjee, Carlin and Gelfand (2015).

- Large literature on constructing non-stationary models: Sampson and Guttorp (1992), Schmidt and O'hagan (2003).
- Kernel mixing: Higdon (1998), Paciorek and Schervish (2006).
- Spatially varying cross-covariance models. Guhaniyogi et al. (2013).
- Spatial basis functions and non-stationary Matérn covariance functions. Katzfuss (2013) and Konomi et al. (2014).
- More comprehensive literature citations in Section 3.2 of the Bayesian modelling book on spatial statistics: Banerjee, Carlin and Gelfand (2015).

- Large literature on constructing non-stationary models: Sampson and Guttorp (1992), Schmidt and O'hagan (2003).
- Kernel mixing: Higdon (1998), Paciorek and Schervish (2006).
- Spatially varying cross-covariance models. Guhaniyogi et al. (2013).
- Spatial basis functions and non-stationary Matérn covariance functions. Katzfuss (2013) and Konomi et al. (2014).
- More comprehensive literature citations in Section 3.2 of the Bayesian modelling book on spatial statistics: Banerjee, Carlin and Gelfand (2015).

- Large literature on constructing non-stationary models: Sampson and Guttorp (1992), Schmidt and O'hagan (2003).
- Kernel mixing: Higdon (1998), Paciorek and Schervish (2006).
- Spatially varying cross-covariance models. Guhaniyogi et al. (2013).
- Spatial basis functions and non-stationary Matérn covariance functions. Katzfuss (2013) and Konomi et al. (2014).
- More comprehensive literature citations in Section 3.2 of the Bayesian modelling book on spatial statistics: Banerjee, Carlin and Gelfand (2015).

Our main idea

• To use Gaussian predictive process to generate anisotropy.

- Suppose there are *m* knot-locations s^{*}₁,..., s^{*}_m. We shall choose these and *m* later.
- Assume a latent Gaussian process w(s) with realisations
 w^{*} = (w(s^{*}₁),..., w(s^{*}_m)).
- At any other location **s**, define $\tilde{w(s)} = E[w(s)|w^*]$.
- This w(s) defines a flexible anisotropic valid spatial process.

Our main idea

- To use Gaussian predictive process to generate anisotropy.
- Suppose there are *m* knot-locations s₁^{*},..., s_m^{*}. We shall choose these and *m* later.
- Assume a latent Gaussian process w(s) with realisations
 w^{*} = (w(s^{*}₁),..., w(s^{*}_m)).
- At any other location **s**, define $w(\tilde{\mathbf{s}}) = E[w(\mathbf{s})|\mathbf{w}^*]$.
- This w(s) defines a flexible anisotropic valid spatial process.

- To use Gaussian predictive process to generate anisotropy.
- Suppose there are *m* knot-locations s^{*}₁,..., s^{*}_m. We shall choose these and *m* later.
- Assume a latent Gaussian process w(s) with realisations
 w^{*} = (w(s^{*}₁),..., w(s^{*}_m)).
- At any other location **s**, define $\tilde{w(s)} = E[w(s)|w^*]$.
- This w(s) defines a flexible anisotropic valid spatial process.

- To use Gaussian predictive process to generate anisotropy.
- Suppose there are *m* knot-locations s^{*}₁,..., s^{*}_m. We shall choose these and *m* later.
- Assume a latent Gaussian process w(s) with realisations
 w^{*} = (w(s^{*}₁),..., w(s^{*}_m)).
- At any other location **s**, define $w(\tilde{\mathbf{s}}) = E[w(\mathbf{s})|\mathbf{w}^*]$.
- This w(s) defines a flexible anisotropic valid spatial process.

- To use Gaussian predictive process to generate anisotropy.
- Suppose there are *m* knot-locations s^{*}₁,..., s^{*}_m. We shall choose these and *m* later.
- Assume a latent Gaussian process w(s) with realisations
 w^{*} = (w(s^{*}₁),..., w(s^{*}_m)).
- At any other location **s**, define $w(\tilde{\mathbf{s}}) = E[w(\mathbf{s})|\mathbf{w}^*]$.
- This w(s) defines a flexible anisotropic valid spatial process.

- Consider D to be R¹, let m = 1 and s₁^{*} = 0, i.e. the single knot at the origin.
- Assume exponential covariance function with decay parameter $\phi > 0$ and variance 1.
- Then $\tilde{w}(s) = \exp(-\phi|s|) w^*(0)$ where $w^*(0) \sim N(0, 1)$.
- Now Cov(*w̃*(*s*), *w̃*(*s′*)) will depend not only on |*s* − *s′*| but on both *s* and *s′*.
- Further complexity is introduced by taking m > 1, and varying the positioning of the knots s^{*}₁,...,s^{*}_m at random or according to a specific clustering mechanism.

- Consider D to be R¹, let m = 1 and s₁^{*} = 0, i.e. the single knot at the origin.
- Assume exponential covariance function with decay parameter φ > 0 and variance 1.

• Then $\tilde{w}(s) = \exp(-\phi|s|) w^*(0)$ where $w^*(0) \sim N(0, 1)$.

- Now Cov(w̃(s), w̃(s')) will depend not only on |s − s'| but on both s and s'.
- Further complexity is introduced by taking m > 1, and varying the positioning of the knots s^{*}₁,...,s^{*}_m at random or according to a specific clustering mechanism.

- Consider D to be R¹, let m = 1 and s^{*}₁ = 0, i.e. the single knot at the origin.
- Assume exponential covariance function with decay parameter φ > 0 and variance 1.

• Then $\tilde{w}(s) = \exp(-\phi|s|) w^*(0)$ where $w^*(0) \sim N(0, 1)$.

 Now Cov(w̃(s), w̃(s')) will depend not only on |s − s'| but on both s and s'.

 Further complexity is introduced by taking *m* > 1, and varying the positioning of the knots s^{*}₁,...,s^{*}_m at random or according to a specific clustering mechanism.

- Consider D to be R¹, let m = 1 and s₁^{*} = 0, i.e. the single knot at the origin.
- Assume exponential covariance function with decay parameter φ > 0 and variance 1.
- Then $\tilde{w}(s) = \exp(-\phi|s|) w^*(0)$ where $w^*(0) \sim N(0, 1)$.
- Now Cov(w̃(s), w̃(s')) will depend not only on |s − s'| but on both s and s'.
- Further complexity is introduced by taking m > 1, and varying the positioning of the knots s^{*}₁,..., s^{*}_m at random or according to a specific clustering mechanism.

- Consider D to be R¹, let m = 1 and s₁^{*} = 0, i.e. the single knot at the origin.
- Assume exponential covariance function with decay parameter φ > 0 and variance 1.

• Then
$$\tilde{w}(s) = \exp(-\phi|s|) w^*(0)$$
 where $w^*(0) \sim N(0, 1)$.

- Now Cov(*w̃*(*s*), *w̃*(*s′*)) will depend not only on |*s* − *s′*| but on both *s* and *s′*.
- Further complexity is introduced by taking *m* > 1, and varying the positioning of the knots s^{*}₁,..., s^{*}_m at random or according to a specific clustering mechanism.

Some details

• For any \mathbf{s} , $\tilde{w}(\mathbf{s}) = \mathbf{c}^*(\mathbf{s})^T S_{w^*}^{-1} \mathbf{w}^*$ where $\mathbf{c}^*(\mathbf{s})$ denotes the $m \times 1$ correlation vector between $w(\mathbf{s})$ and \mathbf{w}^* , given by $\left(C(|\mathbf{s} - \mathbf{s}_1^*|), \ldots, C(|\mathbf{s} - \mathbf{s}_m^*|)\right)^T$ and S_{w^*} is the correlation matrix of \mathbf{w}^* .

• Consider two locations **s** and **s** + **h**. Now:

$$\begin{aligned} 2\tilde{\gamma}(\mathbf{s},\mathbf{h}) &= \operatorname{Var}\left[\tilde{w}(\mathbf{s}) - \tilde{w}(\mathbf{s}+\mathbf{h})\right] \\ &= E\left[\tilde{w}(\mathbf{s}) - \tilde{w}(\mathbf{s}+\mathbf{h})\right]^2 \\ &= \left(\mathbf{c}^*(\mathbf{s}) - \mathbf{c}^*(\mathbf{s}+\mathbf{h})\right)^T S_{w^*}^{-1}\left(\mathbf{c}^*(\mathbf{s}) - \mathbf{c}^*(\mathbf{s}+\mathbf{h})\right). \end{aligned}$$

Depends on both s and h.

Some details

- For any s, \$\tilde{w}\$(s) = c*(s)^T S_{W*}⁻¹w* where c*(s) denotes the m × 1 correlation vector between w(s) and w*, given by (C(|s s_1*|), ..., C(|s s_m*|))^T and S_{W*} is the correlation matrix of w*.
- Consider two locations **s** and **s** + **h**. Now:

$$\begin{aligned} 2\tilde{\gamma}(\mathbf{s},\mathbf{h}) &= \operatorname{Var}\left[\tilde{w}(\mathbf{s}) - \tilde{w}(\mathbf{s} + \mathbf{h})\right] \\ &= E\left[\tilde{w}(\mathbf{s}) - \tilde{w}(\mathbf{s} + \mathbf{h})\right]^2 \\ &= (\mathbf{c}^*(\mathbf{s}) - \mathbf{c}^*(\mathbf{s} + \mathbf{h}))^T S_{w^*}^{-1} (\mathbf{c}^*(\mathbf{s}) - \mathbf{c}^*(\mathbf{s} + \mathbf{h})). \end{aligned}$$

Depends on both s and h.

Some details

- For any s, \$\tilde{w}\$(s) = c*(s)^T S_{W*}⁻¹w* where c*(s) denotes the m × 1 correlation vector between w(s) and w*, given by (C(|s s_1*|), ..., C(|s s_m*|))^T and S_{W*} is the correlation matrix of w*.
- Consider two locations **s** and **s** + **h**. Now:

$$\begin{aligned} 2\tilde{\gamma}(\mathbf{s},\mathbf{h}) &= \operatorname{Var}\left[\tilde{w}(\mathbf{s}) - \tilde{w}(\mathbf{s} + \mathbf{h})\right] \\ &= E\left[\tilde{w}(\mathbf{s}) - \tilde{w}(\mathbf{s} + \mathbf{h})\right]^2 \\ &= \left(\mathbf{c}^*(\mathbf{s}) - \mathbf{c}^*(\mathbf{s} + \mathbf{h})\right)^T S_{w^*}^{-1}\left(\mathbf{c}^*(\mathbf{s}) - \mathbf{c}^*(\mathbf{s} + \mathbf{h})\right). \end{aligned}$$

Depends on both s and h.

• Is $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$ a legitimate semivariogram?

- No! Its not an even function of **h**, i.e. $\tilde{\gamma}(\mathbf{s}, \mathbf{h}) \neq \tilde{\gamma}(\mathbf{s}, -\mathbf{h})$.
- We still can treat this as a function of |**h**| and study its properties for varying **s** and **h** and the knots.
- We fix a central location s**, assumed to be the centroid and then calculate distance between s** and s** + h.

- Is $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$ a legitimate semivariogram?
- No! Its not an even function of \mathbf{h} , i.e. $\tilde{\gamma}(\mathbf{s}, \mathbf{h}) \neq \tilde{\gamma}(\mathbf{s}, -\mathbf{h})$.
- We still can treat this as a function of |**h**| and study its properties for varying **s** and **h** and the knots.
- We fix a central location **s****, assumed to be the centroid and then calculate distance between **s**** and **s**** + **h**.

- Is γ̃(s, h) a legitimate semivariogram?
- No! Its not an even function of **h**, i.e. $\tilde{\gamma}(\mathbf{s}, \mathbf{h}) \neq \tilde{\gamma}(\mathbf{s}, -\mathbf{h})$.
- We still can treat this as a function of |**h**| and study its properties for varying **s** and **h** and the knots.
- We fix a central location s^{**}, assumed to be the centroid and then calculate distance between s^{**} and s^{**} + h.

- Is $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$ a legitimate semivariogram?
- No! Its not an even function of **h**, i.e. $\tilde{\gamma}(\mathbf{s}, \mathbf{h}) \neq \tilde{\gamma}(\mathbf{s}, -\mathbf{h})$.
- We still can treat this as a function of |**h**| and study its properties for varying **s** and **h** and the knots.
- We fix a central location s^{**}, assumed to be the centroid and then calculate distance between s^{**} and s^{**} + h.

• Space filling?

- Clustering?
- Random placement?
- In general, assume a point process, i.e. a random distribution π(S^{*}_m) for s^{*}₁,..., s^{*}_m.
- But how about *m*? We can assume that to be unknown as well.
- Assume $\pi(m)$ for *m* and think of $\pi(\mathbf{S}_m^*)$ conditional on *m*.

- Space filling?
- Clustering?
- Random placement?
- In general, assume a point process, i.e. a random distribution π(S^{*}_m) for s^{*}₁,..., s^{*}_m.
- But how about *m*? We can assume that to be unknown as well.
- Assume $\pi(m)$ for *m* and think of $\pi(\mathbf{S}_m^*)$ conditional on *m*.

- Space filling?
- Clustering?
- Random placement?
- In general, assume a point process, i.e. a random distribution π(S^{*}_m) for s^{*}₁,..., s^{*}_m.
- But how about *m*? We can assume that to be unknown as well.
- Assume $\pi(m)$ for *m* and think of $\pi(\mathbf{S}_m^*)$ conditional on *m*.

- Space filling?
- Clustering?
- Random placement?
- In general, assume a point process, i.e. a random distribution π(S^{*}_m) for s^{*}₁,..., s^{*}_m.
- But how about *m*? We can assume that to be unknown as well.
- Assume $\pi(m)$ for *m* and think of $\pi(\mathbf{S}_m^*)$ conditional on *m*.

- Space filling?
- Clustering?
- Random placement?
- In general, assume a point process, i.e. a random distribution π(S^{*}_m) for s^{*}₁,..., s^{*}_m.
- But how about *m*? We can assume that to be unknown as well.
- Assume $\pi(m)$ for *m* and think of $\pi(\mathbf{S}_m^*)$ conditional on *m*.

- Space filling?
- Clustering?
- Random placement?
- In general, assume a point process, i.e. a random distribution π(S^{*}_m) for s^{*}₁,..., s^{*}_m.
- But how about *m*? We can assume that to be unknown as well.
- Assume $\pi(m)$ for *m* and think of $\pi(\mathbf{S}_m^*)$ conditional on *m*.

Return to $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$

• It is random if m and \mathbf{S}_m^* are.

- We can use the expected value. But that is not available in closed form.
- So, we use Monte Carlo to estimate.
- We generate an m_l from π(m) and and a set of m_l random knots S^{*}_{m_l} from π(S^{*}_{m_l}).
- Conditional on these values, evaluate the inner expectation $E\left[\{\tilde{w}(\mathbf{s}) \tilde{w}(\mathbf{s} + \mathbf{h})\}^2 | m_l, \mathbf{S}^*_{m_l}\right].$
- Finally, we approximate $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$ by

$$\frac{1}{2L}\sum_{\ell=1}^{L}E\left[\left\{\widetilde{w}(\mathbf{s})-\widetilde{w}(\mathbf{s}+\mathbf{h})\right\}^{2}|m_{l},\mathbf{S}_{m_{l}}^{*}\right]$$

Return to $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$

- It is random if m and \mathbf{S}_m^* are.
- We can use the expected value. But that is not available in closed form.
- So, we use Monte Carlo to estimate.
- We generate an m_ℓ from π(m) and and a set of m_ℓ random knots S^{*}_{m_ℓ} from π(S^{*}_{m_ℓ}).
- Conditional on these values, evaluate the inner expectation $E\left[\{\tilde{w}(\mathbf{s}) \tilde{w}(\mathbf{s} + \mathbf{h})\}^2 | m_l, \mathbf{S}^*_{m_l}\right].$
- Finally, we approximate $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$ by

$$\frac{1}{2L}\sum_{\ell=1}^{L}E\left[\left\{\widetilde{w}(\mathbf{s})-\widetilde{w}(\mathbf{s}+\mathbf{h})\right\}^{2}|m_{l},\mathbf{S}_{m_{l}}^{*}\right]$$

Return to $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$

- It is random if m and \mathbf{S}_m^* are.
- We can use the expected value. But that is not available in closed form.
- So, we use Monte Carlo to estimate.
- We generate an m_l from π(m) and and a set of m_l random knots S^{*}_{m_l} from π(S^{*}_{m_l}).
- Conditional on these values, evaluate the inner expectation $E\left[\{\tilde{w}(\mathbf{s}) \tilde{w}(\mathbf{s} + \mathbf{h})\}^2 | m_l, \mathbf{S}^*_{m_l}\right].$
- Finally, we approximate $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$ by

$$\frac{1}{2L}\sum_{\ell=1}^{L}E\left[\left\{\widetilde{w}(\mathbf{s})-\widetilde{w}(\mathbf{s}+\mathbf{h})\right\}^{2}|m_{l},\mathbf{S}_{m_{l}}^{*}\right]$$
Return to $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$

- It is random if m and \mathbf{S}_m^* are.
- We can use the expected value. But that is not available in closed form.
- So, we use Monte Carlo to estimate.
- We generate an m_ℓ from π(m) and and a set of m_ℓ random knots S^{*}_{m_ℓ} from π(S^{*}_{m_ℓ}).
- Conditional on these values, evaluate the inner expectation $E\left[\{\tilde{w}(\mathbf{s}) \tilde{w}(\mathbf{s} + \mathbf{h})\}^2 | m_l, \mathbf{S}^*_{m_l}\right].$
- Finally, we approximate $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$ by

$$\frac{1}{2L}\sum_{\ell=1}^{L}E\left[\left\{\widetilde{w}(\mathbf{s})-\widetilde{w}(\mathbf{s}+\mathbf{h})\right\}^{2}|m_{l},\mathbf{S}_{m_{l}}^{*}\right].$$

Return to $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$

- It is random if m and \mathbf{S}_m^* are.
- We can use the expected value. But that is not available in closed form.
- So, we use Monte Carlo to estimate.
- We generate an m_ℓ from π(m) and and a set of m_ℓ random knots S^{*}_{m_ℓ} from π(S^{*}_{m_ℓ}).
- Conditional on these values, evaluate the inner expectation $E\left[\{\tilde{w}(\mathbf{s}) \tilde{w}(\mathbf{s} + \mathbf{h})\}^2 | m_l, \mathbf{S}^*_{m_l}\right].$
- Finally, we approximate $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$ by

$$\frac{1}{2L}\sum_{\ell=1}^{L}E\left[\left\{\widetilde{w}(\mathbf{s})-\widetilde{w}(\mathbf{s}+\mathbf{h})\right\}^{2}|m_{l},\mathbf{S}_{m_{l}}^{*}\right]$$

Return to $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$

- It is random if m and \mathbf{S}_m^* are.
- We can use the expected value. But that is not available in closed form.
- So, we use Monte Carlo to estimate.
- We generate an m_ℓ from π(m) and and a set of m_ℓ random knots S^{*}_{m_ℓ} from π(S^{*}_{m_ℓ}).
- Conditional on these values, evaluate the inner expectation $E\left[\{\tilde{w}(\mathbf{s}) \tilde{w}(\mathbf{s} + \mathbf{h})\}^2 | m_l, \mathbf{S}^*_{m_l}\right].$
- Finally, we approximate $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$ by

$$\frac{1}{2L}\sum_{\ell=1}^{L}E\left[\left\{\tilde{w}(\mathbf{s})-\tilde{w}(\mathbf{s}+\mathbf{h})\right\}^{2}|m_{l},\mathbf{S}_{m_{l}}^{*}\right].$$

Consider $\mathbb{D}=[-1,1]$ in one and $\mathbb{D}=[-1,1]\times [-1,1]$ in two dimensions.

- **1** Space filling with m = 25
- Output: Complete Spatial Randomness (CSR) with m = 25.
- 3 All the knots clustered within the central quarter: [-0.25, 0.25] with m = 25.
- CSR but with *m* following uniform between 1 to 25.

Consider $\mathbb{D} = [-1, 1]$ in one and $\mathbb{D} = [-1, 1] \times [-1, 1]$ in two dimensions.

- **1** Space filling with m = 25
- 2 Complete Spatial Randomness (CSR) with m = 25.
- 3 All the knots clustered within the central quarter: [-0.25, 0.25] with m = 25.
- OSR but with *m* following uniform between 1 to 25.

Consider $\mathbb{D}=[-1,1]$ in one and $\mathbb{D}=[-1,1]\times [-1,1]$ in two dimensions.

- **1** Space filling with m = 25
- 2 Complete Spatial Randomness (CSR) with m = 25.
- All the knots clustered within the central quarter: [-0.25, 0.25] with m = 25.

OSR but with *m* following uniform between 1 to 25.

Consider $\mathbb{D}=[-1,1]$ in one and $\mathbb{D}=[-1,1]\times [-1,1]$ in two dimensions.

- **1** Space filling with m = 25
- 2 Complete Spatial Randomness (CSR) with m = 25.
- 3 All the knots clustered within the central quarter: [-0.25, 0.25] with m = 25.
- CSR but with *m* following uniform between 1 to 25.

One dimensional example

- Solid line: Semi variogram in positive and dotted line is in the negative direction.
- Compare with the figure for isotropic correlation structure shown before.
- Effect of the space filling knots are seen in the top left.
- Knots clustered in a smaller sub-region is seen in the bottom left panel.
- The correlation curves become 'more' smooth when knots sujit sahu^{are} placed at random.

Two dimensional example

- Semivariogram plots against radial distance.
- The shape of the variogram depends on where the knots are placed.
- Shows angular anisotropy as well.

Two dimensional example ...

- Semivariogram plots against angle.
- There may not be any sill.
- Hence, the GPP can generate very flexible anisotropic processes.

Generating zonal anisotropy

- Consider the scallop data set from Ecker and Gelfand.
- Top left: Theoretical contours for an isotropic model.
- Top right: Empirical Semivariogram Contour (ESC) plot of the observed data.
- Bottom left: Theoretical SC plot for a fixed space filling knot design with 100 knots.
- Bottom right: TSC plot for a random design.

• Basic Model:

 $Y(\mathbf{s}) = \mathbf{x}^{T}(\mathbf{s})\boldsymbol{\beta} + \tilde{w}(\mathbf{s}) + \epsilon(\mathbf{s})$

• The residual is partitioned into two pieces: one spatial, $\tilde{w}(\mathbf{s})$, and one non-spatial, $\epsilon(\mathbf{s})$.

- *w̃*(**s**) is a non-stationary and anisotropic Gaussian process depending on the parameters σ²_w, decay parameter φ, and smoothness ν and the number and positioning of the knot locations.
- $\epsilon(\mathbf{s})$ adds the nugget (τ^2) effect.
- $\tilde{w}(\mathbf{s})$ reduces dimension if n > m. Otherwise, it may increase it to achieve flexibility.

• Basic Model:

$$Y(\mathbf{s}) = \mathbf{x}^{T}(\mathbf{s})\boldsymbol{\beta} + ilde{w}(\mathbf{s}) + \epsilon(\mathbf{s})$$

• The residual is partitioned into two pieces: one spatial, $\tilde{w}(\mathbf{s})$, and one non-spatial, $\epsilon(\mathbf{s})$.

- *w̃*(s) is a non-stationary and anisotropic Gaussian process depending on the parameters σ²_w, decay parameter φ, and smoothness ν and the number and positioning of the knot locations.
- $\epsilon(\mathbf{s})$ adds the nugget (τ^2) effect.
- $\tilde{w}(\mathbf{s})$ reduces dimension if n > m. Otherwise, it may increase it to achieve flexibility.

• Basic Model:

$$Y(\mathbf{s}) = \mathbf{x}^{T}(\mathbf{s})\boldsymbol{\beta} + \tilde{w}(\mathbf{s}) + \epsilon(\mathbf{s})$$

- The residual is partitioned into two pieces: one spatial,
 w̃(**s**), and one non-spatial, *ϵ*(**s**).
- *w̃*(**s**) is a non-stationary and anisotropic Gaussian process depending on the parameters σ²_w, decay parameter φ, and smoothness ν and the number and positioning of the knot locations.
- $\epsilon(\mathbf{s})$ adds the nugget (τ^2) effect.
- $\tilde{w}(\mathbf{s})$ reduces dimension if n > m. Otherwise, it may increase it to achieve flexibility.

• Basic Model:

$$Y(\mathbf{s}) = \mathbf{x}^{T}(\mathbf{s})\boldsymbol{\beta} + \tilde{w}(\mathbf{s}) + \epsilon(\mathbf{s})$$

- The residual is partitioned into two pieces: one spatial,
 w̃(**s**), and one non-spatial, *ϵ*(**s**).
- *w̃*(**s**) is a non-stationary and anisotropic Gaussian process depending on the parameters σ²_w, decay parameter φ, and smoothness v and the number and positioning of the knot locations.
- $\epsilon(\mathbf{s})$ adds the nugget (τ^2) effect.
- $\tilde{w}(\mathbf{s})$ reduces dimension if n > m. Otherwise, it may increase it to achieve flexibility.

• Basic Model:

$$Y(\mathbf{s}) = \mathbf{x}^{T}(\mathbf{s})\boldsymbol{\beta} + \tilde{w}(\mathbf{s}) + \epsilon(\mathbf{s})$$

- The residual is partitioned into two pieces: one spatial,
 w̃(**s**), and one non-spatial, *ϵ*(**s**).
- *w̃*(**s**) is a non-stationary and anisotropic Gaussian process depending on the parameters σ²_w, decay parameter φ, and smoothness v and the number and positioning of the knot locations.
- $\epsilon(\mathbf{s})$ adds the nugget (τ^2) effect.
- $\tilde{w}(\mathbf{s})$ reduces dimension if n > m. Otherwise, it may increase it to achieve flexibility.

Interpretations attached to $\epsilon(\mathbf{s})$

• pure error term; model is not perfectly spatial;

- τ^2 and σ_w^2 are known as variance components.
- measurement error or replication variability causing discontinuity in spatial surface Y(s);
- microscale uncertainty; distances smaller than the smallest inter-location distance, independence assumed.

- pure error term; model is not perfectly spatial;
- τ^2 and σ_w^2 are known as variance components.
- measurement error or replication variability causing discontinuity in spatial surface Y(s);
- microscale uncertainty; distances smaller than the smallest inter-location distance, independence assumed.

- pure error term; model is not perfectly spatial;
- τ^2 and σ_w^2 are known as variance components.
- measurement error or replication variability causing discontinuity in spatial surface Y(s);
- microscale uncertainty; distances smaller than the smallest inter-location distance, independence assumed.

- pure error term; model is not perfectly spatial;
- τ^2 and σ_w^2 are known as variance components.
- measurement error or replication variability causing discontinuity in spatial surface Y(s);
- microscale uncertainty; distances smaller than the smallest inter-location distance, independence assumed.

Likelihood and priors

 Conditional on *m* assume a non-homogenous Poisson Process model for the knots S^{*}_m.

$$\pi(\mathbf{S}_m^*) = (\lambda(D))^{-m} \prod_{j=1}^m \lambda(\mathbf{s}_j),$$

where $\lambda(D) = \int_D \lambda(\mathbf{s}) d\mathbf{s}$ and $\lambda(\mathbf{s})$ is a given intensity function which is constant for CSR.

 The logarithm of the full posterior distribution, log (π (m, S^{*}_m, w (S^{*}_m), θ|z)), is given by:

$$\begin{aligned} & \quad -\frac{n}{2}\log(\tau^2) \\ & \quad -\frac{1}{2\tau^2}\sum_{i=1}^n \left(Z(\mathbf{s}_i) - \mathbf{x}(\mathbf{s}_i)^T \boldsymbol{\beta} - \tilde{w}(\mathbf{s}_i)\right)^2 \\ & \quad -m\log(\lambda(D)) + \sum_{j=1}^m \log(\lambda(\mathbf{s}_j)) \\ & \quad -\frac{m}{2}\log(\sigma_w^2) - \frac{1}{2}\log|S_w| - \frac{1}{2\sigma_w^2}(\mathbf{w}^*)^T S_w^{-1}\mathbf{w} \\ & \quad +\log(\pi(\theta)) \end{aligned}$$

where $\theta = (\beta, \tau^2, \sigma_w^2, \nu, \phi)^T$ and $\pi(\theta)$ denotes the prior.

Likelihood and priors

 Conditional on *m* assume a non-homogenous Poisson Process model for the knots S^{*}_m.

$$\pi(\mathbf{S}_m^*) = (\lambda(D))^{-m} \prod_{j=1}^m \lambda(\mathbf{s}_j),$$

where $\lambda(D) = \int_D \lambda(\mathbf{s}) d\mathbf{s}$ and $\lambda(\mathbf{s})$ is a given intensity function which is constant for CSR.

 The logarithm of the full posterior distribution, log (π (m, S^{*}_m, w (S^{*}_m), θ|z)), is given by:

$$\begin{aligned} & \propto \quad -\frac{n}{2}\log(\tau^2) \\ & -\frac{1}{2\tau^2}\sum_{i=1}^n \left(z(\mathbf{s}_i) - \mathbf{x}(\mathbf{s}_i)^T \boldsymbol{\beta} - \tilde{w}(\mathbf{s}_i)\right)^2 \\ & -m\log(\lambda(D)) + \sum_{j=1}^m \log(\lambda(\mathbf{s}_j)) \\ & -\frac{m}{2}\log(\sigma_w^2) - \frac{1}{2}\log|S_w| - \frac{1}{2\sigma_w^2}(\mathbf{w}^*)^T S_w^{-1} \mathbf{w} \\ & +\log(\pi(\theta)) \end{aligned}$$

where $\theta = (\beta, \tau^2, \sigma_w^2, \nu, \phi)^T$ and $\pi(\theta)$ denotes the prior.

- Informativeness: $\pi(\beta)$ can be a flat (improper)
- Without nugget, τ², can't identify both σ²_w and φ (Zhang, 2004). With Matérn, can identify the product. So an informative prior on at least one of these parameters.
- With τ^2 , then ϕ and at least one of σ_w^2 and τ^2 require informative priors.
- Assume a Matérn covariance function with known ν . If the prior on β , σ_W^2 , ϕ is of the form $\frac{\pi(\phi)}{(\sigma_W^2)^{a+1}}$ with $\pi(\cdot)$ uniform, then we get improper posterior if $a < \frac{1}{2}$.
- Shows the problem with using IG(ε, ε) priors for σ²_w − nearly improper. Safer is IG(a, b) with a ≥ 1.

- Informativeness: $\pi(\beta)$ can be a flat (improper)
- Without nugget, τ^2 , can't identify both σ_w^2 and ϕ (Zhang, 2004). With Matérn, can identify the product. So an informative prior on at least one of these parameters.
- With τ^2 , then ϕ and at least one of σ_w^2 and τ^2 require informative priors.
- Assume a Matérn covariance function with known ν. If the prior on β, σ²_W, φ is of the form ^{π(φ)}/_{(σ²_W)^{a+1}} with π(·) uniform, then we get improper posterior if a < ¹/₂.
- Shows the problem with using $IG(\epsilon, \epsilon)$ priors for $\sigma_w^2 -$ nearly improper. Safer is IG(a, b) with $a \ge 1$.

- Informativeness: $\pi(\beta)$ can be a flat (improper)
- Without nugget, τ², can't identify both σ²_w and φ (Zhang, 2004). With Matérn, can identify the product. So an informative prior on at least one of these parameters.
- With τ², then φ and at least one of σ²_w and τ² require informative priors.
- Assume a Matérn covariance function with known ν . If the prior on β , σ_w^2 , ϕ is of the form $\frac{\pi(\phi)}{(\sigma_w^2)^{a+1}}$ with $\pi(\cdot)$ uniform, then we get improper posterior if $a < \frac{1}{2}$.
- Shows the problem with using IG(ε, ε) priors for σ²_w − nearly improper. Safer is IG(a, b) with a ≥ 1.

- Informativeness: $\pi(\beta)$ can be a flat (improper)
- Without nugget, τ², can't identify both σ²_w and φ (Zhang, 2004). With Matérn, can identify the product. So an informative prior on at least one of these parameters.
- With τ², then φ and at least one of σ²_w and τ² require informative priors.
- Assume a Matérn covariance function with known *ν*. If the prior on β, σ²_W, φ is of the form π(φ)/(σ²_W)^{a+1} with π(·) uniform, then we get improper posterior if a < 1/2.
- Shows the problem with using $IG(\epsilon, \epsilon)$ priors for $\sigma_w^2 -$ nearly improper. Safer is IG(a, b) with $a \ge 1$.

Spatial prediction (Bayesian kriging)

- Prediction of Y(s₀) at a new site s₀ with associated covariates x₀ ≡ x(s₀).
- Predictive distribution $\pi(y(\mathbf{s}_0)|\mathbf{y}) =$

$$\int \pi(y(\mathbf{s}_0)|m,\mathbf{S}_m^*,\mathbf{w}^*,\theta,\mathbf{y})\pi(m,\mathbf{S}_m^*,\mathbf{w}^*,\theta|\mathbf{y})dmd\mathbf{S}_m^*d\mathbf{w}^*d\theta$$

- \implies easy Monte Carlo estimate using composition with Gibbs draws $\theta^{(1)}, \ldots, \theta^{(G)}$:
- For each $\theta^{(g)}$ drawn from $\pi(\theta|\mathbf{y}, X)$ draw $Y(\mathbf{s}_0)^{(g)}$ from $f(y(\mathbf{s}_0|\mathbf{y}, \theta^{(g)}, X, \mathbf{x}_0))$.

Model	RMSPE	MAPE	Bias	RBias	NCov(%)	G	P	G+P
AQUM	26.96	19.45	16.93	0.34	-	-	-	-
Kriging	20.12	15.26	3.48	0.07	96.13	-	-	-
Linear	13.66	10.45	-1.35	-0.03	99.83	105733	8002	113735
GP	15.14	12.39	2.48	0.05	98.32	2918	18594	21511
<i>M</i> ₁	13.54	10.23	2.84	0.06	98.33	3828	51684	55512
M ₂	10.78	8.17	1.12	0.02	99.16	4897	62710	67607
M ₃	13.29	10.10	2.32	0.05	98.83	4765	61756	66521
<i>M</i> ₄	14.72	10.93	4.51	0.09	94.34	5000	62603	67603

Table: Model choice measures for NO₂. Fitted n = 4822, validation $n = 601 \approx 12.4\%$. $M_1, ..., M_4$ are models with fixed range parameters at 3000, 600, 300 and 100 kilometres respectively. G and P are goodness-of-fit and Penalty according to the predictive model choice criteria (Gelfand and Ghosh, 1998).

Model	RMSPE	MAPE	Bias	RBias	NCov(%)	G	P	G+P
AQUM	16.06	13.28	-8.79	-0.14	_	-	-	-
Kriging	8.95	7.08	-3.44	-0.06	93.31	-	-	-
Linear	9.01	7.29	-0.60	-0.01	99.45	76384	2010	78394
GP	9.60	7.90	2.36	0.03	100.0	1149	5992	7141
<i>M</i> ₁	6.77	5.25	0.72	0.01	94.50	1387	18107	19494
M ₂	6.53	5.12	0.72	0.01	96.70	1371	18716	20087
M ₃	6.68	5.17	0.56	0.009	95.33	1366	18870	20236
<i>M</i> ₄	8.09	5.98	0.41	0.006	96.42	1285	19139	20424
<i>M</i> ₅	6.53	5.12	0.72	0.01	96.70	1370	18706	20076
M ₆	6.82	5.27	0.74	0.01	93.95	1388	17941	19329

Table: Model choice measures for O₃. Fitting n = 3269, validation n = 364. $M_1, ..., M_4$ are models with fixed range parameters as before and M_5 and M_6 are models with uniform and gamma prior distributions for the decay parameter ϕ .

Model	RMSPE	MAPE	Bias	RBias	NCov(%)	G	Р	G+P
AQUM	11.85	10.32	10.27	0.51	-	-	-	-
Kriging	3.82	2.99	0.09	0.005	88.60	-	-	-
Linear	5.65	4.69	0.32	0.02	89.23	91873	91973	183846
GP	5.71	4.72	1.10	0.05	85.34	721	3928	4649
<i>M</i> ₁	3.29	2.55	-0.03	-0.002	89.70	595	7617	8212
M ₂	3.45	2.65	-0.14	-0.007	89.03	585	8023	8608
M ₃	3.56	2.72	-0.24	-0.01	89.70	554	7755	8309
<i>M</i> ₄	4.81	3.39	-0.13	-0.007	91.36	539	8331	8870
<i>M</i> ₅	3.46	2.67	-0.20	-0.01	91.02	574	7779	8353
M ₆	3.28	2.55	-0.04	-0.002	89.70	593	7614	8207

Table: Model choice measures for PM₁₀. Fitting n = 2463, validation n = 301. $M_1, ..., M_4$ are models with fixed range parameters as before and M_5 and M_6 are models with uniform and gamma prior distributions for the decay parameter ϕ .

Model	RMSPE	MAPE	Bias	RBias	NCov(%)	G	Р	G+P
AQUM	7.26	5.41	4.77	0.34	-	-	-	-
Kriging	2.81	1.92	-0.76	-0.05	82.53	-	-	-
Linear	5.17	4.24	-0.43	-0.03	81.45	46590	46679	93268
GP	5.18	4.35	1.51	0.11	81.45	595	5466	6061
<i>M</i> ₁	2.72	1.93	-0.52	-0.04	83.11	330	2765	3095
M ₂	2.81	1.98	-0.62	-0.04	82.68	318	2819	3137
M ₃	2.91	2.05	-0.56	-0.04	82.25	304	2883	3186
<i>M</i> ₄	4.50	3.01	-0.57	-0.04	84.84	289	3126	3415
M ₅	2.82	1.98	-0.62	-0.04	83.11	318	2821	3139
M ₆	2.70	1.92	-0.77	-0.05	83.54	314	2651	2966

Table: Model choice measures for PM_{2.5}. Fitting n = 1820, validation n = 231. $M_1, ..., M_4$ are models with fixed range parameters as before and M_5 and M_6 are models with uniform and gamma prior distributions for the decay parameter ϕ .

Example of a local authority aggregated map

Figure: Annual map of ozone levels in 2011

We have proposed flexible anisotropic models for spatial and spatio-temporal data.

- We can generate all sorts of anisotropy: sill, nugget and zonal anisotropy.
- Spatio-temporal models perform better out of sample predictions as we have illustrated with air pollution data.
- A separate talk/paper discusses air pollution modelling and links pollution to health outcome data.

- We have proposed flexible anisotropic models for spatial and spatio-temporal data.
- We can generate all sorts of anisotropy: sill, nugget and zonal anisotropy.
- Spatio-temporal models perform better out of sample predictions as we have illustrated with air pollution data.
- A separate talk/paper discusses air pollution modelling and links pollution to health outcome data.

- We have proposed flexible anisotropic models for spatial and spatio-temporal data.
- We can generate all sorts of anisotropy: sill, nugget and zonal anisotropy.
- Spatio-temporal models perform better out of sample predictions as we have illustrated with air pollution data.
- A separate talk/paper discusses air pollution modelling and links pollution to health outcome data.

- We have proposed flexible anisotropic models for spatial and spatio-temporal data.
- We can generate all sorts of anisotropy: sill, nugget and zonal anisotropy.
- Spatio-temporal models perform better out of sample predictions as we have illustrated with air pollution data.
- A separate talk/paper discusses air pollution modelling and links pollution to health outcome data.