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@ Models for the covariance function
@ Types of anisotropy

@ How can predictive processes be used to generate
anisotropic models?

@ Examples:

e Modelling scallop abundance data
e Modelling UK air pollution data for five years

@ Discussion
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Example: UK air pollution data modelling

@ Map of 323 local
authorities in
England for which
= we have health
outcome data.

@ Red dots define the
corners of the 12 km
square grid cells
where we have
AQUM output.

Northing

@ Blue dots represent
S the 142 AURN

Easting alr'qua“ty

monitoring sites.
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What is anisotropy?

@ Modelling setup: Suppose that we have random variables
Y(s1),..., Y(sn) where each s; denotes a particular
location.
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What is anisotropy?

@ Modelling setup: Suppose that we have random variables
Y(s1),..., Y(sn) where each s; denotes a particular
location.

@ In general, consider a real-valued spatial process Y(s),
where s € D and D is the study region, usually a sub-space
of R2, England in the above example!

@ There are 3 main concepts in spatial statistics (in the
Matheron School):

@ Stationarity
@ Variogram
© Isotropy

@ No formal model based inference for Y(s) yet.
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Stationarity

@ Suppose our spatial process has a mean, u(s) = E(Y(s)),
and that the variance of Y(s) exists for all s.
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Stationarity

@ Suppose our spatial process has a mean, u(s) = E(Y(s)),
and that the variance of Y(s) exists for all s.

@ The process is said to be strictly stationary (also called
strongly stationary) if, for any given n > 1, any set of n sites
S1,...,Sp and any h the distribution of Y(s1),..., Y(sn) is
the same as that of Y(s1 +h),..., Y(sn+ h).

@ A less restrictive condition is given by weak stationarity
(also called second-order stationarity): A process is weakly
stationary if u(s) = and Cov(Y(s), Y(s + h)) = C(h) for
all h such that s and s + h both lie in D.
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Notes on Stationarity

@ Weak stationarity says that the covariance between the
values of the process at any two locations s and s + h can
be summarized by a covariance function C(h) (sometimes
called a covariogram), and this function depends only on
the separation vector h.
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Notes on Stationarity

@ Weak stationarity says that the covariance between the
values of the process at any two locations s and s + h can
be summarized by a covariance function C(h) (sometimes
called a covariogram), and this function depends only on
the separation vector h.

@ Note that with all variances assumed to exist, strong
stationarity implies weak stationarity.

@ The converse is not true in general, but it does hold for
Gaussian processes
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Variogram

@ Semi-Variogram is defined as:

y(h) = %var( Y(s+h) - Y(s))
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Variogram

@ Semi-Variogram is defined as:

J(h) = %var( Y(s +h) - Y(s))

@ Simple calculation yields

2y(h) = 2[C(0) - C(h)]

@ So given the covariance function C(-) we can determine
the semivariogram.

@ But the converse is not true, we can add +ato C(-) and
obtain the same ().
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@ If the semivariogram y(h) depends upon the separation
vector only through its length ||h|| then we say that the
process is isotropic.
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The most common covariance function

The Matérn correlation function is given by:

C(t;¢,v) = ———(2Vvot)’K,(2Vvgt), ¢>0,v>0,

ov— 1r( )
where I'(v) is the standard gamma function, K, is the modified
Bessel function of second kind with order v, and t = ||h|| is the
distance between two sites.

@ The parameter ¢ controls the rate of decay of the
correlation as the distance t increases
@ The parameter v controls smoothness of the random field
Y(s).
e v=1/2 = C(t) = o exp(—¢t), t > 0; Exponential
Covariance Function
e v=23/2, C(t) = (1 + ¢t) exp(-¢t), t > 0.
° v— oo = C(t) = o? exp(—¢?t?),t > 0; Gaussian

Sujit Sahu 9



Exponential Covariance Function

@ This is by far the most popular choice for modelers.

@ The correlation between two points distance t apart is
exp(—¢t).

@ The effective range, ty, as the distance at which this
correlation becomes negligible, equal to 0.05.

@ Setting
exp(—¢t)) = 0.05
= Iy = -log(0.05)/¢
= = 3/¢

since log(0.05) ~ -3.
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@ Recall y(h) = y(llhll) = C(0) - C(lIhl|).

@ So y(0) = 0. But often there are micro-scale variotion or
measurement error even at very small distances.

@ To tackle that we define the nugget

2 = lim y(b).

t—0t

@ This introduces a discontinuity at 0 for the covariogram
¥(1).
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@ What happens to y(t) when t — co?

@ This asymptotic value is called the sill.

@ In our notation sill is given by 2 + 2.

@ The sill minus the nugget, o, is called the partial sill.

@ The effective range is the smallest distance for which the
semivariogram achieves the asymptotic sill.
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Three closed form Matérn covariograms:

@ Exponential: y(t) = 72 4+ 02(1 — exp(—¢t)).
@ Gaussian: y(t) = 72 + o?(1 — exp(-¢?12)).
@ Matérn with v = 1.5. y(t) = 72 + a2(1 = (1 + ¢t) exp(-¢t)).

Sujit Sahu 13



What is anisotropy?

@ Anisotropy is opposite of isotropy. For example,
e If the variogram depends on angle it is angular anisotropy.

e Similarly, sill and range anisotropy.

e Geometric anisotropy is obtained by by stretching of an
isotropic model: y(h) = yo( Vh’Qh) where yq(-) is isotropic
and Q is a positive definite matrix.

e Zonal anisotropy. Variogram only depends on some
components of the vector h. Also called stratified
anisotropy.

@ See Chapter 2 of Chiles and Delfiner (2012).
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How can we generate anisotropic processes?

@ Answer depends on what type of anisotropy (e.g.
geometric or zonal) we want.
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How can we generate anisotropic processes?

@ Answer depends on what type of anisotropy (e.g.
geometric or zonal) we want.

@ ltis difficult to decide the type of anisotropy when all we
have available is a realisation y(s+), ..., y(sn) along with
the locations sy, ..., sp).

@ Hence it is difficult to specify a flexible covariance function
C().

@ Further problem arises due to the positive definiteness
requirement of the implied covariance matrix of any n
realisations Y(s).

Sujit Sahu 15



What’s available in the literature?

@ Large literature on constructing non-stationary models:
Sampson and Guttorp (1992), Schmidt and O’hagan
(2003).
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What’s available in the literature?

@ Large literature on constructing non-stationary models:
Sampson and Guttorp (1992), Schmidt and O’hagan
(2003).

@ Kernel mixing: Higdon (1998), Paciorek and Schervish
(2006).

@ Spatially varying cross-covariance models. Guhaniyogi et
al. (2013).

@ Spatial basis functions and non-stationary Matérn
covariance functions. Katzfuss (2013) and Konomi et al.
(2014).

@ More comprehensive literature citations in Section 3.2 of
the Bayesian modelling book on spatial statistics:
Banerjee, Carlin and Gelfand (2015).
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Our main idea

@ To use Gaussian predictive process to generate anisotropy.

@ Suppose there are m knot-locations si, ..., sy,. We shall
choose these and m later.

@ Assume a latent Gaussian process w(s) with realisations
W = (w(s]),..., w(Sp))

@ At any other location s, define w(s) = E [w(s)|w*].

@ This w(s) defines a flexible anisotropic valid spatial
process.

Sujit Sahu 17



An example

@ Consider D to be R', let m =1 and s; =0, i.e. the single
knot at the origin.
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An example

@ Consider Dtobe R', let m =1 and s} = 0, i.e. the single
knot at the origin.

@ Assume exponential covariance function with decay
parameter ¢ > 0 and variance 1.

@ Then w(s) = exp(-¢lsl) w*(0) where w*(0) ~ N(0,1).

@ Now Cov(w(s), w(s’)) will depend not only on |s — s’| but
on both sand s’.

@ Further complexity is introduced by taking m > 1, and
varying the positioning of the knots s7, ..., s}, at random or
according to a specific clustering mechanism.
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Some details

@ Forany s, w(s) = c*(s)’S,'w* where c*(s) denotes the
m x 1 correlation vector between w(s) and w*, given by

(C(|s -sil),....C(Is - s;’<n|))T and Sy~ is the correlation
matrix of w*.
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Some details

@ Forany s, w(s) = c*(s)’S,'w* where c*(s) denotes the
m x 1 correlation vector between w(s) and w*, given by
T : .
(C(ls - s).....C(Is = s},l)) and S is the correlation
matrix of w*.
@ Consider two locations s and s + h. Now:

2y(s,h) = Var[w(s) - w(s + h)]
= E[w(s) - Ww(s+ h)]?
(c*(s)—c*(s+h))" S,! (c(s) -c*(s +h)).
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Some details

@ Forany s, w(s) = c*(s)’S,'w* where c*(s) denotes the
m x 1 correlation vector between w(s) and w*, given by

T : .
(C(ls - s).....C(Is = s},l)) and S is the correlation
matrix of w*.

@ Consider two locations s and s + h. Now:

2y(s,h) = Var[w(s) - w(s + h)]
= E[W(s) - w(s + h)]?
(c*(s)-c*(s+h))" S;! (c*(s) - c*(s +h)).

@ Depends on both s and h.
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Exploring correlation structure with ¥(s, h).

@ Is ¥(s, h) a legitimate semivariogram?
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@ We still can treat this as a function of |h| and study its
properties for varying s and h and the knots.
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Exploring correlation structure with ¥(s, h).

@ Is ¥(s, h) a legitimate semivariogram?
@ No! Its not an even function of h, i.e. ¥(s, h) # y(s, -h).

@ We still can treat this as a function of |h| and study its
properties for varying s and h and the knots.

@ We fix a central location s**, assumed to be the centroid
and then calculate distance between s** and s** + h.
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How do we choose the knots?

@ Space filling?
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How do we choose the knots?

@ Space filling?
@ Clustering?
@ Random placement?

@ In general, assume a point process, i.e. a random
distribution =(Sy,) for s3, ..., sy,

@ But how about m? We can assume that to be unknown as
well.

@ Assume n(m) for m and think of z(S},) conditional on m.

Sujit Sahu 21



Return to y(s, h)

@ ltis random if mand S, are.
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Return to y(s, h)

@ ltis random if mand S;, are.

@ We can use the expected value. But that is not available in
closed form.

@ So, we use Monte Carlo to estimate.

@ We generate an m, from n(m) and and a set of m, random
knots Sy, from n(Sp,,).

@ Conditional on these values, evaluate the inner expectation
E[{iv(s) - w(s + h)}?|m;. S5, |

@ Finally, we approximate ¥(s,h) by

2LZE[ (s + h)2 Im;, S, |.
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Four designs for knot-locations

Consider D = [-1,1] inone and D = [-1,1] x [-1, 1] in two
dimensions.

@ Space filling with m = 25
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Four designs for knot-locations

Consider D = [-1,1] inone and D = [-1,1] x [-1, 1] in two
dimensions.

@ Space filling with m = 25
© Complete Spatial Randomness (CSR) with m = 25.

© All the knots clustered within the central quarter:
[-0.25,0.25] with m = 25.

© CSR but with m following uniform between 1 to 25.
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One dimensional example

04 05
ftance o th cenre
Kol Desgn :Clstr

@ Solid line: Semi variogram in pgﬁs‘wiﬁff{;”éwgﬁmawdotted line isin
the negative direction.

@ Compare with the figure for isotropic correlation structure
shown before.

@ Effect of the space filling knots are seen in the top left.

@ Knots clustered in a smaller sub-region is seen in the
bottom left panel.

@ The correlation curves become ‘more’ smooth when knots

Suiit Sah@"© placed at random. o4



Two dimensional example
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Knot Design : Cluster

@ Semivariogram plots against radial distance.

@ The shape of the variogram depends on where the knots
are placed.

@ Shows angular anisotropy as well.
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Two dimensional example ...

‘covariogram
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n: Ordinary space-filling Knot design: Random scatter
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@ Semivariogram plots against angle.
@ There may not be any sill.

@ Hence, the GPP can generate very flexible anisotropic
processes.
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Generating zonal anisotropy

100 50

@ Consider the scallop data set from Ecker and Gelfand.

@ Top left: Theoretical contours for an isotropic model.

@ Top right: Empirical Semivariogram Contour (ESC) plot of
the observed data.

@ Bottom left: Theoretical SC plot for a fixed space filling
knot design with 100 knots.

@ Bottom right: TSC plot for a random design.
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Hierarchical modeling

@ Basic Model:
Y(s) =x"(s)B+ W(s) + (s)
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@ The residual is partitioned into two pieces: one spatial,
w(s), and one non-spatial, €(s).

@ w(s) is a non-stationary and anisotropic Gaussian process
depending on the parameters o2, decay parameter ¢, and
smoothness v and the number and positioning of the knot
locations.
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Hierarchical modeling

@ Basic Model:
Y(s) =x'(s)B+ W(s) + (s)

@ The residual is partitioned into two pieces: one spatial,
w(s), and one non-spatial, €(s).

@ w(s) is a non-stationary and anisotropic Gaussian process
depending on the parameters o2, decay parameter ¢, and
smoothness v and the number and positioning of the knot
locations.

@ (s) adds the nugget (7?) effect.
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Hierarchical modeling

@ Basic Model:
Y(s) =x'(s)B+ W(s) + (s)

@ The residual is partitioned into two pieces: one spatial,
w(s), and one non-spatial, €(s).

@ w(s) is a non-stationary and anisotropic Gaussian process
depending on the parameters o2, decay parameter ¢, and
smoothness v and the number and positioning of the knot
locations.

@ (s) adds the nugget (7?) effect.
@ w(s) reduces dimension if n > m. Otherwise, it may

increase it to achieve flexibility.
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Interpretations attached to €(s)

@ pure error term; model is not perfectly spatial;
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Interpretations attached to €(s)

@ pure error term; model is not perfectly spatial;
@ 72 and o2, are known as variance components.

@ measurement error or replication variability causing
discontinuity in spatial surface Y(s);

@ microscale uncertainty; distances smaller than the smallest
inter-location distance, independence assumed.
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Likelihood and priors

@ Conditional on m assume a non-homogenous Poisson
Process model for the knots S7,,.

e 3) - o[ )

where A(D fD s)ds and A(s) is a given intensity
function WhICh is constant for CSR.
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Likelihood and priors

@ Conditional on m assume a non-homogenous Poisson
Process model for the knots S7,,.

m
7 (Sy,) A (sj)
j=1

where A(D fD s)ds and A(s) is a given intensity
function WhICh is constant for CSR.
@ The logarithm of the full posterior distribution,
log (7 (m, S;,, W (S;,).01z)), is given by:
o —g |Og(T2)
~13 51 (2(si) - x(s)TB - i(sy))
-mlog(A(D)) + X log(A(s;))
~2og(c2) - % Iog |SW| -~ ZJT%(W*)TS;JW
+log(7(0))

where 0 = (B8,7%,02,,v,¢)" and () denotes the prior.
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Priors...

@ Informativeness: n(B) can be a flat (improper)

@ Without nugget, 72, can’t identify both o2, and ¢ (Zhang,
2004). With Matérn, can identify the product. So an
informative prior on at least one of these parameters.
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Priors...

@ Informativeness: n(B) can be a flat (improper)

@ Without nugget, 72, can'’t identify both o2, and ¢ (Zhang,
2004). With Matérn, can identify the product. So an
informative prior on at least one of these parameters.

@ With 72, then ¢ and at least one of o2, and 72 require
informative priors.

@ Assume a Matérn covariance function with known v. If the

prior on B, cr%,,,qb is of the form % with 7(-) uniform,

then we get improper posterior if a < .

@ Shows the problem with using IG(e, €) priors for 2, —
nearly improper. Safer is IG(a, b) with a > 1.
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Spatial prediction (Bayesian kriging)

@ Prediction of Y(sp) at a new site so with associated
covariates Xo = X(So).

@ Predictive distribution n(y(so)ly) =
fﬂ(y(so)lm, S;,, W, 0,y)r(m, S, w", 8ly)dmdS;,dw*de
@ — easy Monte Carlo estimate using composition with
Gibbs draws 6", ..., 6(®):

@ For each 09 drawn from #(8ly, X) draw Y(s0)(9) from
f(y(soly, 09, X, Xo).
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Results for NO, modelling and validation.

Model RMSPE | MAPE Bias | RBias | NCov(%) G P G+P
AQUM 26.96 19.45 | 16.93 0.34 - - - -
Kriging 20.12 15.26 3.48 0.07 96.13 - - -
Linear 13.66 10.45 | —1.35 | -0.08 99.83 | 105733 8002 | 113735
GP 15.14 | 12.39 2.48 0.05 98.32 2918 | 18594 21511
M; 13.54 | 10.23 2.84 0.06 98.33 3828 | 51684 55512
My 10.78 8.17 1.12 0.02 99.16 4897 | 62710 67607
Ms 13.29 10.10 2.32 0.05 98.83 4765 | 61756 66521
M, 14.72 10.93 4.51 0.09 94.34 5000 | 62603 67603

Table: Model choice measures for NO,. Fitted n = 4822, validation
n =601~ 12.4%. M, ..., My are models with fixed range parameters
at 3000, 600, 300 and 100 kilometres respectively. G and P are
goodness-of-fit and Penalty according to the predictive model choice
criteria (Gelfand and Ghosh, 1998).
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Results for O3 modelling and validation.

Model RMSPE | MAPE Bias | RBias | NCov(%) G P G+P
AQUM 16.06 | 13.28 | -8.79 | —0.14 - - - -
Kriging 8.95 7.08 | -3.44 | -0.06 93.31 - - -
Linear 9.01 7.29 | —0.60 | —0.01 99.45 | 76384 2010 | 78394
GP 9.60 7.90 2.36 0.03 100.0 1149 5992 7141
M 6.77 5.25 0.72 0.01 94.50 1387 | 18107 | 19494
Mo 6.53 5.12 0.72 0.01 96.70 1371 18716 | 20087
Mz 6.68 5.17 0.56 | 0.009 95.33 1366 | 18870 | 20236
My 8.09 5.98 0.41 | 0.006 96.42 1285 | 19139 | 20424
Ms 6.53 5.12 0.72 0.01 96.70 1370 | 18706 | 20076
Me 6.82 5.27 0.74 0.01 93.95 1388 | 17941 | 19329

Table: Model choice measures for O3. Fitting n = 3269, validation

n = 364. My, ..., My are models with fixed range parameters as before
and Ms and Mg are models with uniform and gamma prior
distributions for the decay parameter ¢.
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Results for PM1y, modelling and validation.

Model RMSPE | MAPE Bias RBias | NCov(%) G P G+P
AQUM 11.85 10.32 | 10.27 0.51 - - - -
Kriging 3.82 2.99 0.09 0.005 88.60 - - -
Linear 5.65 4.69 0.32 0.02 89.23 | 91873 | 91973 | 183846
GP 5.71 4.72 1.10 0.05 85.34 721 3928 4649
M; 3.29 2.55 | —-0.03 | —0.002 89.70 595 7617 8212
My 3.45 2.65 | -0.14 | -0.007 89.03 585 8023 8608
Mz 3.56 2.72 | -0.24 -0.01 89.70 554 7755 8309
M, 4.81 3.39 | -0.13 | -0.007 91.36 539 8331 8870
Ms 3.46 2.67 | —0.20 -0.01 91.02 574 7779 8353
Me 3.28 2.55 | -0.04 | —0.002 89.70 593 7614 8207

Table: Model choice measures for PMyg. Fitting n = 2463, validation
n=301. My, ..., My are models with fixed range parameters as before
and Ms and Ms are models with uniform and gamma prior
distributions for the decay parameter ¢.
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Results for PM2 5 modelling and validation.

Model RMSPE | MAPE Bias | RBias | NCov(%) G P G+P
AQUM 7.26 5.41 4.77 0.34 - - - -
Kriging 2.81 1.92 | -0.76 | -0.05 82.53 - - -
Linear 5.17 424 | -0.43 | —-0.03 81.45 | 46590 | 46679 | 93268
GP 5.18 4.35 1.51 0.11 81.45 595 5466 6061
M 2.72 193 | -0.52 | -0.04 83.11 330 2765 3095
M, 2.81 198 | -0.62 | —0.04 82.68 318 2819 3137
Mz 2.91 2.05 | -0.56 | —0.04 82.25 304 2883 3186
My 4.50 3.01 | -0.57 | —0.04 84.84 289 3126 3415
Ms 2.82 198 | —-0.62 | —0.04 83.11 318 2821 3139
Ms 2.70 1.92 | -0.77 | -0.05 83.54 314 2651 2966

Table: Model choice measures for PM, 5. Fitting n = 1820, validation
n=231. My, ..., My are models with fixed range parameters as before
and Ms and Ms are models with uniform and gamma prior
distributions for the decay parameter ¢.
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Example of a local authority aggregated map

Figure: Annual map of ozone levels in 2011
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Conclusions

@ We have proposed flexible anisotropic models for spatial
and spatio-temporal data.
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Conclusions

@ We have proposed flexible anisotropic models for spatial
and spatio-temporal data.

© We can generate all sorts of anisotropy: sill, nugget and
zonal anisotropy.

© Spatio-temporal models perform better out of sample
predictions as we have illustrated with air pollution data.

©Q A separate talk/paper discusses air pollution modelling and
links pollution to health outcome data.
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