On generating a flexible class of anisotropic spatial models using Gaussian predictive processes Sujit Sahu

Southampton

Co-author: Sabyasachi Mukhopadhyay

On generating a flexible class of anisotropic spatial models using Gaussian predictive processes Sujit Sahu

Southampton

http://www.soton.ac.uk/~sks/
Co-author: Sabyasachi Mukhopadhyay
Rio, ISI 2015

Outline

- Models for the covariance function
- Types of anisotropy
- How can predictive processes be used to generate anisotropic models?

Outline

- Models for the covariance function
- Types of anisotropy
- How can predictive processes be used to generate anisotropic models?

Outline

- Models for the covariance function
- Types of anisotropy
- How can predictive processes be used to generate anisotropic models?

Outline

- Models for the covariance function
- Types of anisotropy
- How can predictive processes be used to generate anisotropic models?
- Examples:
- Modelling scallop abundance data
- Modelling UK air pollution data for five years

Outline

- Models for the covariance function
- Types of anisotropy
- How can predictive processes be used to generate anisotropic models?
- Examples:
- Modelling scallop abundance data
- Discussion

Outline

- Models for the covariance function
- Types of anisotropy
- How can predictive processes be used to generate anisotropic models?
- Examples:
- Modelling scallop abundance data
- Modelling UK air pollution data for five years
- Models for the covariance function
- Types of anisotropy
- How can predictive processes be used to generate anisotropic models?
- Examples:
- Modelling scallop abundance data
- Modelling UK air pollution data for five years
- Discussion

Example: UK air pollution data modelling

Easting

- Map of 323 local authorities in England for which we have health outcome data.
- Red dots define the corners of the 12 km square grid cells where we have AQUM output.
- Blue dots represent the 142 AURN air-quality monitoring sites.

What is anisotropy?

- Modelling setup: Suppose that we have random variables $Y\left(\mathbf{s}_{1}\right), \ldots, Y\left(\mathbf{s}_{n}\right)$ where each \mathbf{s}_{i} denotes a particular location.

- In general, consider a real-valued spatial process $Y(\mathbf{s})$, where $s \in \mathbb{D}$ and \mathbb{D} is the study reaion, usually a sub-space of \mathbb{R}^{2}, England in the above example!

There are 3 main concepts in spatial statistics (in the Matheron School):

What is anisotropy?

- Modelling setup: Suppose that we have random variables $Y\left(\mathbf{s}_{1}\right), \ldots, Y\left(\mathbf{s}_{n}\right)$ where each \mathbf{s}_{i} denotes a particular location.
- In general, consider a real-valued spatial process $Y(\mathbf{s})$, where $\mathbf{s} \in \mathbb{D}$ and \mathbb{D} is the study region, usually a sub-space of \mathbb{R}^{2}, England in the above example!

What is anisotropy?

- Modelling setup: Suppose that we have random variables $Y\left(\mathbf{s}_{1}\right), \ldots, Y\left(\mathbf{s}_{n}\right)$ where each \mathbf{s}_{i} denotes a particular location.
- In general, consider a real-valued spatial process $Y(\mathbf{s})$, where $\mathbf{s} \in \mathbb{D}$ and \mathbb{D} is the study region, usually a sub-space of \mathbb{R}^{2}, England in the above example!
- There are 3 main concepts in spatial statistics (in the Matheron School):

What is anisotropy?

- Modelling setup: Suppose that we have random variables $Y\left(\mathbf{s}_{1}\right), \ldots, Y\left(\mathbf{s}_{n}\right)$ where each \mathbf{s}_{i} denotes a particular location.
- In general, consider a real-valued spatial process $Y(\mathbf{s})$, where $\mathbf{s} \in \mathbb{D}$ and \mathbb{D} is the study region, usually a sub-space of \mathbb{R}^{2}, England in the above example!
- There are 3 main concepts in spatial statistics (in the Matheron School):
(1) Stationarity

What is anisotropy?

- Modelling setup: Suppose that we have random variables $Y\left(\mathbf{s}_{1}\right), \ldots, Y\left(\mathbf{s}_{n}\right)$ where each \mathbf{s}_{i} denotes a particular location.
- In general, consider a real-valued spatial process $Y(\mathbf{s})$, where $\mathbf{s} \in \mathbb{D}$ and \mathbb{D} is the study region, usually a sub-space of \mathbb{R}^{2}, England in the above example!
- There are 3 main concepts in spatial statistics (in the Matheron School):
(1) Stationarity
(2) Variogram

What is anisotropy?

- Modelling setup: Suppose that we have random variables $Y\left(\mathbf{s}_{1}\right), \ldots, Y\left(\mathbf{s}_{n}\right)$ where each \mathbf{s}_{i} denotes a particular location.
- In general, consider a real-valued spatial process $Y(\mathbf{s})$, where $\mathbf{s} \in \mathbb{D}$ and \mathbb{D} is the study region, usually a sub-space of \mathbb{R}^{2}, England in the above example!
- There are 3 main concepts in spatial statistics (in the Matheron School):
(1) Stationarity
(2) Variogram
(3) Isotropy

What is anisotropy?

- Modelling setup: Suppose that we have random variables $Y\left(\mathbf{s}_{1}\right), \ldots, Y\left(\mathbf{s}_{n}\right)$ where each \mathbf{s}_{i} denotes a particular location.
- In general, consider a real-valued spatial process $Y(\mathbf{s})$, where $\mathbf{s} \in \mathbb{D}$ and \mathbb{D} is the study region, usually a sub-space of \mathbb{R}^{2}, England in the above example!
- There are 3 main concepts in spatial statistics (in the Matheron School):
(1) Stationarity
(2) Variogram
(3) Isotropy
- No formal model based inference for $Y(\mathbf{s})$ yet.

Stationarity

- Suppose our spatial process has a mean, $\mu(\mathbf{s})=E(Y(\mathbf{s}))$, and that the variance of $Y(\mathbf{s})$ exists for all \mathbf{s}.

The process is said to be strictly stationary (also called stronaly stationarv) if, for any aiven $n \geq 1$, anv set of n site s s_{1}, \ldots, s_{n} and any h the distribution of $Y\left(s_{1}\right), \ldots, Y\left(s_{n}\right)$ is the same as that of $Y\left(\mathbf{s}_{1}+\mathbf{h}\right), \ldots, Y\left(\mathbf{s}_{n}+\mathbf{h}\right)$

- A less restrictive condition is given by weak stationarity (also called second-order stationarity): A nronesc is weakly stationary if $\mu(\mathbf{s})=\mu$ and $\operatorname{Cov}(Y(\mathbf{s}), Y(\mathbf{s}+\mathbf{h}))=C(\mathbf{h})$ for all \mathbf{h} such that \mathbf{s} and $\mathbf{s}+\mathbf{h}$ both lie in D.

Stationarity

- Suppose our spatial process has a mean, $\mu(\mathbf{s})=E(Y(\mathbf{s}))$, and that the variance of $Y(\mathbf{s})$ exists for all \mathbf{s}.
- The process is said to be strictly stationary (also called strongly stationary) if, for any given $n \geq 1$, any set of n sites $\mathbf{s}_{1}, \ldots, \mathbf{s}_{n}$ and any \mathbf{h} the distribution of $Y\left(\mathbf{s}_{1}\right), \ldots, Y\left(\mathbf{s}_{n}\right)$ is the same as that of $Y\left(\mathbf{s}_{1}+\mathbf{h}\right), \ldots, Y\left(\mathbf{s}_{n}+\mathbf{h}\right)$.

Stationarity

- Suppose our spatial process has a mean, $\mu(\mathbf{s})=E(Y(\mathbf{s}))$, and that the variance of $Y(\mathbf{s})$ exists for all \mathbf{s}.
- The process is said to be strictly stationary (also called strongly stationary) if, for any given $n \geq 1$, any set of n sites $\mathbf{s}_{1}, \ldots, \mathbf{s}_{n}$ and any \mathbf{h} the distribution of $Y\left(\mathbf{s}_{1}\right), \ldots, Y\left(\mathbf{s}_{n}\right)$ is the same as that of $Y\left(\mathbf{s}_{1}+\mathbf{h}\right), \ldots, Y\left(\mathbf{s}_{n}+\mathbf{h}\right)$.
- A less restrictive condition is given by weak stationarity (also called second-order stationarity): A process is weakly stationary if $\mu(\mathbf{s})=\mu$ and $\operatorname{Cov}(Y(\mathbf{s}), Y(\mathbf{s}+\mathbf{h}))=C(\mathbf{h})$ for all \mathbf{h} such that \mathbf{s} and $\mathbf{s}+\mathbf{h}$ both lie in D.

Notes on Stationarity

- Weak stationarity says that the covariance between the values of the process at any two locations \mathbf{s} and $\mathbf{s}+\mathbf{h}$ can be summarized by a covariance function $C(\mathbf{h})$ (sometimes called a covariogram), and this function depends only on the separation vector \mathbf{h}.

Note that with all variances assumed to exist, strong
stationarity implies weak stationarity.
The converse is not true in general, but it does hold for
Gaussian processes

Notes on Stationarity

- Weak stationarity says that the covariance between the values of the process at any two locations \mathbf{s} and $\mathbf{s}+\mathbf{h}$ can be summarized by a covariance function $C(\mathbf{h})$ (sometimes called a covariogram), and this function depends only on the separation vector \mathbf{h}.
- Note that with all variances assumed to exist, strong stationarity implies weak stationarity.

The converse is not true in general, but it does hold for Gaussian processes

Notes on Stationarity

- Weak stationarity says that the covariance between the values of the process at any two locations \mathbf{s} and $\mathbf{s}+\mathbf{h}$ can be summarized by a covariance function $C(\mathbf{h})$ (sometimes called a covariogram), and this function depends only on the separation vector \mathbf{h}.
- Note that with all variances assumed to exist, strong stationarity implies weak stationarity.
- The converse is not true in general, but it does hold for Gaussian processes

Variogram

- Semi-Variogram is defined as:

$$
\gamma(\mathbf{h})=\frac{1}{2} \operatorname{var}(Y(\mathbf{s}+\mathbf{h})-Y(\mathbf{s}))
$$

- Simple calculation yields

- So given the covariance function $C(\cdot)$ we can determine the semivariogram.

Variogram

- Semi-Variogram is defined as:

$$
\gamma(\mathbf{h})=\frac{1}{2} \operatorname{var}(Y(\mathbf{s}+\mathbf{h})-Y(\mathbf{s}))
$$

- Simple calculation yields

$$
2 \gamma(\mathbf{h})=2[C(\mathbf{0})-C(\mathbf{h})]
$$

- So given the covariance function $C(\cdot)$ we can determine the semivariogram.
- But the converse is not true, we can add \pm a to $C(\cdot)$ and obtain the same $\gamma(\cdot)$.

Variogram

- Semi-Variogram is defined as:

$$
\gamma(\mathbf{h})=\frac{1}{2} \operatorname{var}(Y(\mathbf{s}+\mathbf{h})-Y(\mathbf{s}))
$$

- Simple calculation yields

$$
2 \gamma(\mathbf{h})=2[C(\mathbf{0})-C(\mathbf{h})]
$$

- So given the covariance function $C(\cdot)$ we can determine the semivariogram.
- But the converse is not true, we can add \pm a to $C(\cdot)$ and obtain the same $\gamma(\cdot)$.

Variogram

- Semi-Variogram is defined as:

$$
\gamma(\mathbf{h})=\frac{1}{2} \operatorname{var}(Y(\mathbf{s}+\mathbf{h})-Y(\mathbf{s}))
$$

- Simple calculation yields

$$
2 \gamma(\mathbf{h})=2[C(\mathbf{0})-C(\mathbf{h})]
$$

- So given the covariance function $C(\cdot)$ we can determine the semivariogram.
- But the converse is not true, we can add \pm a to $C(\cdot)$ and obtain the same $\gamma(\cdot)$.

Isotropy

- If the semivariogram $\gamma(\mathbf{h})$ depends upon the separation vector only through its length ||h|| then we say that the process is isotropic.
- For an isotropic process, $\gamma(\mathrm{h})$ is a real-valued function of a univariate argument, and can be written as $\gamma(\|\mathbf{h}\|)$.
- 'sotropic processes are popu'ar 'because of their simplicity, interpretability, and because a number of relatively simple parametric forms are available as candidates for $\gamma(\cdot)$

Isotropy

- If the semivariogram $\gamma(\mathbf{h})$ depends upon the separation vector only through its length ||h|| then we say that the process is isotropic.
- For an isotropic process, $\gamma(\mathbf{h})$ is a real-valued function of a univariate argument, and can be written as $\gamma(\|\mathbf{h}\|)$.
- Isotropic processes are popular because of their simplicity, interpretability, and because a number of relatively simple

Isotropy

- If the semivariogram $\gamma(\mathbf{h})$ depends upon the separation vector only through its length ||h|| then we say that the process is isotropic.
- For an isotropic process, $\gamma(\mathbf{h})$ is a real-valued function of a univariate argument, and can be written as $\gamma(\|\mathbf{h}\|)$.
- Isotropic processes are popular because of their simplicity, interpretability, and because a number of relatively simple parametric forms are available as candidates for $\gamma(\cdot)$.

Isotropy

- If the semivariogram $\gamma(\mathbf{h})$ depends upon the separation vector only through its length ||h|| then we say that the process is isotropic.
- For an isotropic process, $\gamma(\mathbf{h})$ is a real-valued function of a univariate argument, and can be written as $\gamma(\|\mathbf{h}\|)$.
- Isotropic processes are popular because of their simplicity, interpretability, and because a number of relatively simple parametric forms are available as candidates for $\gamma(\cdot)$.

The most common covariance function

The Matérn correlation function is given by:

$$
C(t ; \phi, v)=\frac{1}{2^{v-1} \Gamma(v)}(2 \sqrt{v} \phi t)^{v} K_{v}(2 \sqrt{v} \phi t), \quad \phi>0, v>0,
$$

where $\Gamma(v)$ is the standard gamma function, K_{v} is the modified Bessel function of second kind with order v, and $t=\|\mathbf{h}\|$ is the distance between two sites.

- The parameter ϕ controls the rate of decay of the correlation as the distance t increases
- The parameter v controls smoothness of the random field $Y(\mathbf{s})$.
- $v=1 / 2 \Longrightarrow C(t)=\sigma^{2} \exp (-\phi t), t>0$; Exponential Covariance Function
- $v=3 / 2, C(t)=\sigma^{2}(1+\phi t) \exp (-\phi t), t>0$.
- $v \rightarrow \infty \Longrightarrow C(t)=\sigma^{2} \exp \left(-\phi^{2} t^{2}\right), t>0$; Gaussian

Exponential Covariance Function

- This is by far the most popular choice for modelers.
- The correlation between two points distance t apart is $\exp (-\phi t)$.
- The effective range, t_{0}, as the distance at which this correlation becomes negligible, equal to 0.05 .
- Setting

$$
\begin{aligned}
\exp \left(-\phi t_{0}\right) & =0.05 \\
\Longrightarrow t_{0} & =-\log (0.05) / \phi \\
\Longrightarrow t_{0} & \approx 3 / \phi
\end{aligned}
$$

since $\log (0.05) \approx-3$.

Nugget

- Recall $\gamma(\mathbf{h})=\gamma(\|\mathbf{h}\|)=C(\mathbf{0})-C(\|\mathbf{h}\|)$.
- So $\gamma(0)=0$. But often there are micro-scale variotion or measurement error even at very small distances.
- To tackle that we define the nugget

$$
\tau^{2} \equiv \lim _{t \rightarrow 0^{+}} \gamma(t)
$$

- This introduces a discontinuity at 0 for the covariogram $\gamma(t)$.
- What happens to $\gamma(t)$ when $t \rightarrow \infty$?
- This asymptotic value is called the sill.
- In our notation sill is given by $\tau^{2}+\sigma^{2}$.
- The sill minus the nugget, σ^{2}, is called the partial sill.
- The effective range is the smallest distance for which the semivariogram achieves the asymptotic sill.

Three closed form Matérn covariograms:

(1) Exponential: $\gamma(t)=\tau^{2}+\sigma^{2}(1-\exp (-\phi t))$.
(2) Gaussian: $\gamma(t)=\tau^{2}+\sigma^{2}\left(1-\exp \left(-\phi^{2} t^{2}\right)\right)$.
(3) Matérn with $v=$ 1.5. $\gamma(t)=\tau^{2}+\sigma^{2}(1-(1+\phi t) \exp (-\phi t))$.

What is anisotropy?

- Anisotropy is opposite of isotropy. For example,
- If the variogram depends on angle it is angular anisotropy.
- Similarly, sill and range anisotropy.
- Geometric anisotropy is obtained by by stretching of an isotropic model: $\gamma(h)=\gamma_{0}\left(\sqrt{\mathbf{h}^{\prime} Q \mathbf{h}}\right)$ where $\gamma_{0}(\cdot)$ is isotropic and Q is a positive definite matrix.
- Zonal anisotropy. Variogram only depends on some components of the vector \mathbf{h}. Also called stratified anisotropy.
- See Chapter 2 of Chilès and Delfiner (2012).

How can we generate anisotropic processes?

- Answer depends on what type of anisotropy (e.g. geometric or zonal) we want.

```
- It is difficult to decide the type of anisotropy when all we have available is a realisation \(y\left(\mathbf{s}_{1}\right), \ldots, y\left(\mathbf{s}_{n}\right)\) along with the locations \(\mathbf{s}_{1}, \ldots, \mathbf{s}_{n}\) ).
```


How can we generate anisotropic processes?

- Answer depends on what type of anisotropy (e.g. geometric or zonal) we want.
- It is difficult to decide the type of anisotropy when all we have available is a realisation $y\left(\mathbf{s}_{1}\right), \ldots, y\left(\mathbf{s}_{n}\right)$ along with the locations $\mathbf{s}_{1}, \ldots, \mathbf{s}_{n}$).

Hence it is difficult to specify a flexible covariance function

Further problem arises due to the positive definiteness realirement of the imnlied covariance matrix of any n realisations $Y(s)$

How can we generate anisotropic processes?

- Answer depends on what type of anisotropy (e.g. geometric or zonal) we want.
- It is difficult to decide the type of anisotropy when all we have available is a realisation $y\left(\mathbf{s}_{1}\right), \ldots, y\left(\mathbf{s}_{n}\right)$ along with the locations $\mathbf{s}_{1}, \ldots, \mathbf{s}_{n}$).
- Hence it is difficult to specify a flexible covariance function $C(\dot{)}$.
- Further problem arises due to the positive definiteness requirement of the implied covariance matrix of any n realisations $Y(s)$

How can we generate anisotropic processes?

- Answer depends on what type of anisotropy (e.g. geometric or zonal) we want.
- It is difficult to decide the type of anisotropy when all we have available is a realisation $y\left(\mathbf{s}_{1}\right), \ldots, y\left(\mathbf{s}_{n}\right)$ along with the locations $\mathbf{s}_{1}, \ldots, \mathbf{s}_{n}$).
- Hence it is difficult to specify a flexible covariance function $C(\dot{)}$.
- Further problem arises due to the positive definiteness requirement of the implied covariance matrix of any n realisations $Y(\mathbf{s})$.

What's available in the literature?

- Large literature on constructing non-stationary models: Sampson and Guttorp (1992), Schmidt and O'hagan (2003).

- Spatially varying cross-covariance models. Guhaniyogi et

What's available in the literature?

- Large literature on constructing non-stationary models: Sampson and Guttorp (1992), Schmidt and O'hagan (2003).
- Kernel mixing: Higdon (1998), Paciorek and Schervish (2006).

What's available in the literature?

- Large literature on constructing non-stationary models: Sampson and Guttorp (1992), Schmidt and O'hagan (2003).
- Kernel mixing: Higdon (1998), Paciorek and Schervish (2006).
- Spatially varying cross-covariance models. Guhaniyogi et al. (2013).

What's available in the literature?

- Large literature on constructing non-stationary models: Sampson and Guttorp (1992), Schmidt and O'hagan (2003).
- Kernel mixing: Higdon (1998), Paciorek and Schervish (2006).
- Spatially varying cross-covariance models. Guhaniyogi et al. (2013).
- Spatial basis functions and non-stationary Matérn covariance functions. Katzfuss (2013) and Konomi et al. (2014).

What's available in the literature?

- Large literature on constructing non-stationary models: Sampson and Guttorp (1992), Schmidt and O'hagan (2003).
- Kernel mixing: Higdon (1998), Paciorek and Schervish (2006).
- Spatially varying cross-covariance models. Guhaniyogi et al. (2013).
- Spatial basis functions and non-stationary Matérn covariance functions. Katzfuss (2013) and Konomi et al. (2014).
- More comprehensive literature citations in Section 3.2 of the Bayesian modelling book on spatial statistics: Banerjee, Carlin and Gelfand (2015).

Our main idea

- To use Gaussian predictive process to generate anisotropy.

- Suppose there are m knot-locations $\mathbf{s}_{1}^{*}, \ldots, \mathbf{s}_{m}^{*}$. We shall choose these and m later.

- Assume a latent Gaussian process w(s) with realisations

Our main idea

- To use Gaussian predictive process to generate anisotropy.
- Suppose there are m knot-locations $\mathbf{s}_{1}^{*}, \ldots, \mathbf{s}_{m}^{*}$. We shall choose these and m later.
- Assume a latent Gaussian process w(s) with realisations - At any other location \mathbf{s}, define $w(\mathbf{s})=E\left[w(\mathbf{s}) \mid \mathbf{w}^{*}\right]$

Our main idea

- To use Gaussian predictive process to generate anisotropy.
- Suppose there are m knot-locations $\mathbf{s}_{1}^{*}, \ldots, \mathbf{s}_{m}^{*}$. We shall choose these and m later.
- Assume a latent Gaussian process w(s) with realisations $\mathbf{w}^{*}=\left(w\left(\mathbf{s}_{1}^{*}\right), \ldots, w\left(\mathbf{s}_{m}^{*}\right)\right)$.
- At any other location \mathbf{s}, define $w(\mathbf{s})=E\left[w(\mathbf{s}) \mid \mathbf{w}^{*}\right]$
- This $w(\tilde{s})$ defines a flexible anisotropic valid spatial process.

Our main idea

- To use Gaussian predictive process to generate anisotropy.
- Suppose there are m knot-locations $\mathbf{s}_{1}^{*}, \ldots, \mathbf{s}_{m}^{*}$. We shall choose these and m later.
- Assume a latent Gaussian process $w(\mathbf{s})$ with realisations $\mathbf{w}^{*}=\left(w\left(\mathbf{s}_{1}^{*}\right), \ldots, w\left(\mathbf{s}_{m}^{*}\right)\right)$.
- At any other location \mathbf{s}, define $w(\mathbf{s})=E\left[w(\mathbf{s}) \mid \mathbf{w}^{*}\right]$.

Our main idea

- To use Gaussian predictive process to generate anisotropy.
- Suppose there are m knot-locations $\mathbf{s}_{1}^{*}, \ldots, \mathbf{s}_{m}^{*}$. We shall choose these and m later.
- Assume a latent Gaussian process $w(\mathbf{s})$ with realisations $\mathbf{w}^{*}=\left(w\left(\mathbf{s}_{1}^{*}\right), \ldots, w\left(\mathbf{s}_{m}^{*}\right)\right)$.
- At any other location \mathbf{s}, define $w(\mathbf{s})=E\left[w(\mathbf{s}) \mid \mathbf{w}^{*}\right]$.
- This $w(\tilde{\mathbf{s}})$ defines a flexible anisotropic valid spatial process.

An example

- Consider \mathbb{D} to be \mathbb{R}^{1}, let $m=1$ and $s_{1}^{*}=0$, i.e. the single knot at the origin.

- Assume exponential covariance function with decay parameter $\phi>0$ and variance 1

An example

- Consider \mathbb{D} to be \mathbb{R}^{1}, let $m=1$ and $s_{1}^{*}=0$, i.e. the single knot at the origin.
- Assume exponential covariance function with decay parameter $\phi>0$ and variance 1.

An example

- Consider \mathbb{D} to be \mathbb{R}^{1}, let $m=1$ and $s_{1}^{*}=0$, i.e. the single knot at the origin.
- Assume exponential covariance function with decay parameter $\phi>0$ and variance 1 .
- Then $\tilde{w}(s)=\exp (-\phi|s|) w^{*}(0)$ where $w^{*}(0) \sim N(0,1)$.
- Further complexity is introduced by taking $m>1$, and varying the positioning of the knots $\mathbf{s}_{1}^{*}, \ldots, \mathbf{s}_{m}^{*}$ at random or according to a specific clustering mechanism.

An example

- Consider \mathbb{D} to be \mathbb{R}^{1}, let $m=1$ and $s_{1}^{*}=0$, i.e. the single knot at the origin.
- Assume exponential covariance function with decay parameter $\phi>0$ and variance 1.
- Then $\tilde{w}(s)=\exp (-\phi|s|) w^{*}(0)$ where $w^{*}(0) \sim N(0,1)$.
- Now $\operatorname{Cov}\left(\tilde{w}(s), \tilde{w}\left(s^{\prime}\right)\right)$ will depend not only on $\left|s-s^{\prime}\right|$ but on both s and s^{\prime}.
- Further complexity is introduced by taking $m>1$, and varying the positioning of the knots \mathbf{s}_{1}^{*} according to a specific clustering mechanism.

An example

- Consider \mathbb{D} to be \mathbb{R}^{1}, let $m=1$ and $s_{1}^{*}=0$, i.e. the single knot at the origin.
- Assume exponential covariance function with decay parameter $\phi>0$ and variance 1.
- Then $\tilde{w}(s)=\exp (-\phi|s|) w^{*}(0)$ where $w^{*}(0) \sim N(0,1)$.
- Now $\operatorname{Cov}\left(\tilde{w}(s), \tilde{w}\left(s^{\prime}\right)\right)$ will depend not only on $\left|s-s^{\prime}\right|$ but on both s and s^{\prime}.
- Further complexity is introduced by taking $m>1$, and varying the positioning of the knots $\mathbf{s}_{1}^{*}, \ldots, \mathbf{s}_{m}^{*}$ at random or according to a specific clustering mechanism.

Some details

- For any $\mathbf{s}, \tilde{w}(\mathbf{s})=\mathbf{c}^{*}(\mathbf{s})^{T} S_{w^{*}}^{-1} \mathbf{w}^{*}$ where $\mathbf{c}^{*}(\mathbf{s})$ denotes the $m \times 1$ correlation vector between $w(\mathbf{s})$ and \mathbf{w}^{*}, given by $\left(C\left(\left|\mathbf{s}-\mathbf{s}_{1}^{*}\right|\right), \ldots, C\left(\left|\mathbf{s}-\mathbf{s}_{m}^{*}\right|\right)\right)^{T}$ and $S_{w^{*}}$ is the correlation matrix of \mathbf{w}^{*}.
- Consider two locations s and s+h. Now: $2 \tilde{\gamma}(\mathbf{s}, \mathbf{h})=\operatorname{Var}[\tilde{w}(\mathbf{s})-\tilde{w}(\mathbf{s}+\mathbf{h})]$ - Depends on both \mathbf{s} and \mathbf{h}.

Some details

- For any $\mathbf{s}, \tilde{w}(\mathbf{s})=\mathbf{c}^{*}(\mathbf{s})^{T} S_{w^{*}}^{-1} \mathbf{w}^{*}$ where $\mathbf{c}^{*}(\mathbf{s})$ denotes the $m \times 1$ correlation vector between $w(\mathbf{s})$ and \mathbf{w}^{*}, given by $\left(C\left(\left|\mathbf{s}-\mathbf{s}_{1}^{*}\right|\right), \ldots, C\left(\left|\mathbf{s}-\mathbf{s}_{m}^{*}\right|\right)\right)^{T}$ and $S_{w^{*}}$ is the correlation matrix of \mathbf{w}^{*}.
- Consider two locations sand $\mathbf{s}+\mathbf{h}$. Now:

$$
\begin{aligned}
2 \tilde{\gamma}(\mathbf{s}, \mathbf{h}) & =\operatorname{Var}[\tilde{w}(\mathbf{s})-\tilde{w}(\mathbf{s}+\mathbf{h})] \\
& =E[\tilde{w}(\mathbf{s})-\tilde{w}(\mathbf{s}+\mathbf{h})]^{2} \\
& =\left(\mathbf{c}^{*}(\mathbf{s})-\mathbf{c}^{*}(\mathbf{s}+\mathbf{h})\right)^{T} S_{w^{*}}^{-1}\left(\mathbf{c}^{*}(\mathbf{s})-\mathbf{c}^{*}(\mathbf{s}+\mathbf{h})\right) .
\end{aligned}
$$

Some details

- For any $\mathbf{s}, \tilde{w}(\mathbf{s})=\mathbf{c}^{*}(\mathbf{s})^{T} S_{w^{*}}^{-1} \mathbf{w}^{*}$ where $\mathbf{c}^{*}(\mathbf{s})$ denotes the $m \times 1$ correlation vector between $w(\mathbf{s})$ and \mathbf{w}^{*}, given by $\left(C\left(\left|\mathbf{s}-\mathbf{s}_{1}^{*}\right|\right), \ldots, C\left(\left|\mathbf{s}-\mathbf{s}_{m}^{*}\right|\right)\right)^{T}$ and $S_{w^{*}}$ is the correlation matrix of \mathbf{w}^{*}.
- Consider two locations sand $\mathbf{s}+\mathbf{h}$. Now:

$$
\begin{aligned}
2 \tilde{\gamma}(\mathbf{s}, \mathbf{h}) & =\operatorname{Var}[\tilde{w}(\mathbf{s})-\tilde{w}(\mathbf{s}+\mathbf{h})] \\
& =E[\tilde{w}(\mathbf{s})-\tilde{w}(\mathbf{s}+\mathbf{h})]^{2} \\
& =\left(\mathbf{c}^{*}(\mathbf{s})-\mathbf{c}^{*}(\mathbf{s}+\mathbf{h})\right)^{T} S_{w^{*}}^{-1}\left(\mathbf{c}^{*}(\mathbf{s})-\mathbf{c}^{*}(\mathbf{s}+\mathbf{h})\right) .
\end{aligned}
$$

- Depends on both \mathbf{s} and \mathbf{h}.

Exploring correlation structure with $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$.

- Is $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$ a legitimate semivariogram?

- We still can treat this as a function of |h| and study its properties for varying \mathbf{s} and \mathbf{h} and the knots.

Exploring correlation structure with $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$.

- Is $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$ a legitimate semivariogram?
- No! Its not an even function of \mathbf{h}, i.e. $\tilde{\gamma}(\mathbf{s}, \mathbf{h}) \neq \tilde{\gamma}(\mathbf{s},-\mathbf{h})$.
- We still can treat this as a function of |h| and study its properties for varying \mathbf{s} and \mathbf{h} and the knots.

Exploring correlation structure with $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$.

- Is $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$ a legitimate semivariogram?
- No! Its not an even function of \mathbf{h}, i.e. $\tilde{\gamma}(\mathbf{s}, \mathbf{h}) \neq \tilde{\gamma}(\mathbf{s},-\mathbf{h})$.
- We still can treat this as a function of |h| and study its properties for varying \mathbf{s} and \mathbf{h} and the knots.

Exploring correlation structure with $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$.

- Is $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$ a legitimate semivariogram?
- No! Its not an even function of \mathbf{h}, i.e. $\tilde{\gamma}(\mathbf{s}, \mathbf{h}) \neq \tilde{\gamma}(\mathbf{s},-\mathbf{h})$.
- We still can treat this as a function of $|\mathbf{h}|$ and study its properties for varying \mathbf{s} and \mathbf{h} and the knots.
- We fix a central location $\mathbf{s}^{* *}$, assumed to be the centroid and then calculate distance between $\mathbf{s}^{* *}$ and $\mathbf{s}^{* *}+\mathbf{h}$.
- Space filling?
- Space filling?
- Clustering?
- Space filling?
- Clustering?
- Random placement?
- In general, assume a point process, i.e. a random
- Space filling?
- Clustering?
- Random placement?
- In general, assume a point process, i.e. a random distribution $\pi\left(\mathbf{S}_{m}^{*}\right)$ for $\mathbf{s}_{1}^{*}, \ldots, \mathbf{s}_{m}^{*}$.

But how about m ? We can assume that to be unknown as
well.

- Assume $\pi(m)$ for m and think of $\pi\left(\mathbf{S}_{m}^{*}\right)$ conditional on m.

How do we choose the knots?

- Space filling?
- Clustering?
- Random placement?
- In general, assume a point process, i.e. a random distribution $\pi\left(\mathbf{S}_{m}^{*}\right)$ for $\mathbf{s}_{1}^{*}, \ldots, \mathbf{s}_{m}^{*}$.
- But how about m ? We can assume that to be unknown as well.

How do we choose the knots?

- Space filling?
- Clustering?
- Random placement?
- In general, assume a point process, i.e. a random distribution $\pi\left(\mathbf{S}_{m}^{*}\right)$ for $\mathbf{s}_{1}^{*}, \ldots, \mathbf{s}_{m}^{*}$.
- But how about m ? We can assume that to be unknown as well.
- Assume $\pi(m)$ for m and think of $\pi\left(\mathbf{S}_{m}^{*}\right)$ conditional on m.
- It is random if m and \mathbf{S}_{m}^{*} are.

- We can use the expected value. But that is not available in closed form.

- So, we use Monte Carlo to estimate.

- It is random if m and \mathbf{S}_{m}^{*} are.
- We can use the expected value. But that is not available in closed form.

- So, we use Monte Carlo to estimate.

- We generate an m_{ℓ} from $\pi(m)$ and and a set of m_{ℓ} random knots $\mathbf{S}_{m_{l}}^{*}$ from $\pi\left(\mathbf{S}_{m_{t}}^{*}\right)$.

Return to $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$

- It is random if m and \mathbf{S}_{m}^{*} are.
- We can use the expected value. But that is not available in closed form.
- So, we use Monte Carlo to estimate.

Return to $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$

- It is random if m and \mathbf{S}_{m}^{*} are.
- We can use the expected value. But that is not available in closed form.
- So, we use Monte Carlo to estimate.
- We generate an m_{ℓ} from $\pi(m)$ and and a set of m_{ℓ} random knots $\mathbf{S}_{m_{l}}^{*}$ from $\pi\left(\mathbf{S}_{m_{\ell}}^{*}\right)$.

- Finally, we approximate $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$ by

Return to $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$

- It is random if m and \mathbf{S}_{m}^{*} are.
- We can use the expected value. But that is not available in closed form.
- So, we use Monte Carlo to estimate.
- We generate an m_{ℓ} from $\pi(m)$ and and a set of m_{ℓ} random knots $\mathbf{S}_{m_{l}}^{*}$ from $\pi\left(\mathbf{S}_{m_{\ell}}^{*}\right)$.
- Conditional on these values, evaluate the inner expectation $E\left[\{\tilde{w}(\mathbf{s})-\tilde{w}(\mathbf{s}+\mathbf{h})\}^{2} \mid m_{l}, \mathbf{S}_{m_{l}}^{*}\right]$.
- Finally, we approximate $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$ by

Return to $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$

- It is random if m and \mathbf{S}_{m}^{*} are.
- We can use the expected value. But that is not available in closed form.
- So, we use Monte Carlo to estimate.
- We generate an m_{ℓ} from $\pi(m)$ and and a set of m_{ℓ} random knots $\mathbf{S}_{m_{l}}^{*}$ from $\pi\left(\mathbf{S}_{m_{\ell}}^{*}\right)$.
- Conditional on these values, evaluate the inner expectation $E\left[\{\tilde{w}(\mathbf{s})-\tilde{w}(\mathbf{s}+\mathbf{h})\}^{2} \mid m_{l}, \mathbf{S}_{m_{l}}^{*}\right]$.
- Finally, we approximate $\tilde{\gamma}(\mathbf{s}, \mathbf{h})$ by

$$
\frac{1}{2 L} \sum_{\ell=1}^{L} E\left[\{\tilde{w}(\mathbf{s})-\tilde{w}(\mathbf{s}+\mathbf{h})\}^{2} \mid m_{l}, \mathbf{S}_{m_{l}}^{*}\right] .
$$

Four designs for knot-locations

Consider $\mathbb{D}=[-1,1]$ in one and $\mathbb{D}=[-1,1] \times[-1,1]$ in two dimensions.
(1) Space filling with $m=25$
(2) Complete Spatial Randomness (CSR) with $m=25$.
(3) All the knots clustered within the central quarter: $[-0.25,0.25]$ with $m=25$.

Four designs for knot-locations

Consider $\mathbb{D}=[-1,1]$ in one and $\mathbb{D}=[-1,1] \times[-1,1]$ in two dimensions.
(1) Space filling with $m=25$
(2) Complete Spatial Randomness (CSR) with $m=25$.
(4) CSR but with m following uniform between 1 to 25 .

Four designs for knot-locations

Consider $\mathbb{D}=[-1,1]$ in one and $\mathbb{D}=[-1,1] \times[-1,1]$ in two dimensions.
(1) Space filling with $m=25$
(2) Complete Spatial Randomness (CSR) with $m=25$.
(3) All the knots clustered within the central quarter: $[-0.25,0.25]$ with $m=25$.

Four designs for knot-locations

Consider $\mathbb{D}=[-1,1]$ in one and $\mathbb{D}=[-1,1] \times[-1,1]$ in two dimensions.
(1) Space filling with $m=25$
(2) Complete Spatial Randomness (CSR) with $m=25$.
(3) All the knots clustered within the central quarter: $[-0.25,0.25]$ with $m=25$.
(4) CSR but with m following uniform between 1 to 25 .

One dimensional example

- Solid line: Semi variogram in positive and dotted line is in the negative direction.
- Compare with the figure for isotropic correlation structure shown before.
- Effect of the space filling knots are seen in the top left.
- Knots clustered in a smaller sub-region is seen in the bottom left panel.
- The correlation curves become 'more' smooth when knots Sujit Sahure placed at random.

Two dimensional example

- Semivariogram plots against radial distance.
- The shape of the variogram depends on where the knots are placed.
- Shows angular anisotropy as well.

Two dimensional example

- Semivariogram plots against angle.
- There may not be any sill.
- Hence, the GPP can generate very flexible anisotropic processes.

Generating zonal anisotropy

- Consider the scallop data set from Ecker and Gelfand.
- Top left: Theoretical contours for an isotropic model.
- Top right: Empirical Semivariogram Contour (ESC) plot of the observed data.
- Bottom left: Theoretical SC plot for a fixed space filling knot design with 100 knots.
- Bottom right: TSC plot for a random design.

Hierarchical modeling

- Basic Model:

$$
Y(\mathbf{s})=\mathbf{x}^{T}(\mathbf{s}) \boldsymbol{\beta}+\tilde{w}(\mathbf{s})+\epsilon(\mathbf{s})
$$

- The residual is partitioned into two pieces: one spatial, $\tilde{w}(\mathbf{s})$, and one non-spatial, $\epsilon(\mathbf{s})$.
 $\tilde{w}(\mathbf{s})$ is a non-stationary and anisotropic Gaussian process depending on the parameters σ_{w}^{2}, decay parameter ϕ, and smoothness v and the number and positioning of the knot locations.

Hierarchical modeling

- Basic Model:

$$
Y(\mathbf{s})=\mathbf{x}^{T}(\mathbf{s}) \beta+\tilde{w}(\mathbf{s})+\epsilon(\mathbf{s})
$$

- The residual is partitioned into two pieces: one spatial, $\tilde{w}(\mathbf{s})$, and one non-spatial, $\epsilon(\mathbf{s})$.
- $\epsilon(s)$ adds the nugget $\left(\tau^{2}\right)$ effect.

Hierarchical modeling

- Basic Model:

$$
Y(\mathbf{s})=\mathbf{x}^{T}(\mathbf{s}) \boldsymbol{\beta}+\tilde{w}(\mathbf{s})+\epsilon(\mathbf{s})
$$

- The residual is partitioned into two pieces: one spatial, $\tilde{w}(\mathbf{s})$, and one non-spatial, $\epsilon(\mathbf{s})$.
- $\tilde{w}(\mathbf{s})$ is a non-stationary and anisotropic Gaussian process depending on the parameters σ_{w}^{2}, decay parameter ϕ, and smoothness v and the number and positioning of the knot locations.
- $\epsilon(\mathbf{s})$ adds the nugget $\left(\tau^{2}\right)$ effect.
- $\tilde{w}(s)$ reduces dimension if $n>m$. Otherwise, it may
increase it to achieve flexibility.

Hierarchical modeling

- Basic Model:

$$
Y(\mathbf{s})=\mathbf{x}^{T}(\mathbf{s}) \boldsymbol{\beta}+\tilde{w}(\mathbf{s})+\epsilon(\mathbf{s})
$$

- The residual is partitioned into two pieces: one spatial, $\tilde{w}(\mathbf{s})$, and one non-spatial, $\epsilon(\mathbf{s})$.
- $\tilde{w}(\mathbf{s})$ is a non-stationary and anisotropic Gaussian process depending on the parameters σ_{w}^{2}, decay parameter ϕ, and smoothness v and the number and positioning of the knot locations.
- $\epsilon(\mathbf{s})$ adds the nugget $\left(\tau^{2}\right)$ effect.

Hierarchical modeling

- Basic Model:

$$
Y(\mathbf{s})=\mathbf{x}^{T}(\mathbf{s}) \boldsymbol{\beta}+\tilde{w}(\mathbf{s})+\epsilon(\mathbf{s})
$$

- The residual is partitioned into two pieces: one spatial, $\tilde{w}(\mathbf{s})$, and one non-spatial, $\epsilon(\mathbf{s})$.
- $\tilde{w}(\mathbf{s})$ is a non-stationary and anisotropic Gaussian process depending on the parameters σ_{w}^{2}, decay parameter ϕ, and smoothness v and the number and positioning of the knot locations.
- $\epsilon(\mathbf{s})$ adds the nugget $\left(\tau^{2}\right)$ effect.
- $\tilde{W}(\mathbf{s})$ reduces dimension if $n>m$. Otherwise, it may increase it to achieve flexibility.

Interpretations attached to $\epsilon(\mathbf{s})$

- pure error term; model is not perfectly spatial;
- τ^{2} and σ_{w}^{2} are known as variance components.
- measurement error or replication variability causing discontinuity in spatial surface $Y(\mathbf{s})$;

Interpretations attached to $\epsilon(\mathbf{s})$

- pure error term; model is not perfectly spatial;
- τ^{2} and σ_{w}^{2} are known as variance components.
- measurement error or replication variability causing discontinuity in spatial surface $Y(\mathbf{s})$;
- microscale uncertainty; distances smaller than the smallest inter-location distance, independence assumed

Interpretations attached to $\epsilon(\mathbf{s})$

- pure error term; model is not perfectly spatial;
- τ^{2} and σ_{w}^{2} are known as variance components.
- measurement error or replication variability causing discontinuity in spatial surface $Y(\mathbf{s})$;
- microscale uncertainty; distances smaller than the smallest inter-location distance, independence assumed.

Interpretations attached to $\epsilon(\mathbf{s})$

- pure error term; model is not perfectly spatial;
- τ^{2} and σ_{w}^{2} are known as variance components.
- measurement error or replication variability causing discontinuity in spatial surface $Y(\mathbf{s})$;
- microscale uncertainty; distances smaller than the smallest inter-location distance, independence assumed.

Likelihood and priors

- Conditional on m assume a non-homogenous Poisson Process model for the knots \mathbf{S}_{m}^{*}.

$$
\pi\left(\mathbf{S}_{m}^{*}\right)=(\lambda(D))^{-m} \prod_{j=1}^{m} \lambda\left(\mathbf{s}_{j}\right)
$$

where $\lambda(D)=\int_{D} \lambda(\mathbf{s}) d \mathbf{s}$ and $\lambda(\mathbf{s})$ is a given intensity function which is constant for CSR.
$\log \left(\pi\left(m, \mathbf{S}_{m}^{*}, \mathbf{w}\left(\mathbf{S}_{m}^{*}\right), \boldsymbol{\theta} \mid \mathbf{z}\right)\right)$, is given by:

where $\theta=\left(\beta, \tau^{2}, \sigma_{w}^{2}, v, \phi\right)^{T}$ and $\pi(\theta)$ denotes the prior.

Likelihood and priors

- Conditional on m assume a non-homogenous Poisson Process model for the knots \mathbf{S}_{m}^{*}.

$$
\pi\left(\mathbf{S}_{m}^{*}\right)=(\lambda(D))^{-m} \prod_{j=1}^{m} \lambda\left(\mathbf{s}_{j}\right)
$$

where $\lambda(D)=\int_{D} \lambda(\mathbf{s}) d \mathbf{s}$ and $\lambda(\mathbf{s})$ is a given intensity function which is constant for CSR.

- The logarithm of the full posterior distribution, $\log \left(\pi\left(m, \mathbf{S}_{m}^{*}, \mathbf{w}\left(\mathbf{S}_{m}^{*}\right), \boldsymbol{\theta} \mid \mathbf{z}\right)\right)$, is given by:

$$
\begin{aligned}
\propto & -\frac{n}{2} \log \left(\tau^{2}\right) \\
& -\frac{1}{2 \tau^{2}} \sum_{i=1}^{n}\left(z\left(\mathbf{s}_{i}\right)-\mathbf{x}\left(\mathbf{s}_{i}\right)^{T} \beta-\tilde{w}\left(\mathbf{s}_{i}\right)\right)^{2} \\
& -m \log (\lambda(D))+\sum_{j=1}^{m} \log \left(\lambda\left(\mathbf{s}_{j}\right)\right) \\
& -\frac{m}{2} \log \left(\sigma_{w}^{2}\right)-\frac{1}{2} \log \left|S_{w}\right|-\frac{1}{2 \sigma_{w}^{2}}\left(\mathbf{w}^{*}\right)^{T} S_{w}^{-1} \mathbf{w} \\
& +\log (\pi(\boldsymbol{\theta}))
\end{aligned}
$$

where $\theta=\left(\beta, \tau^{2}, \sigma_{w}^{2}, \nu, \phi\right)^{T}$ and $\pi(\theta)$ denotes the prior.

- Informativeness: $\pi(\beta)$ can be a flat (improper)
- Without nugget, τ^{2}, can't identify both σ_{w}^{2} and ϕ (Zhang, 2004). With Matérn, can identify the product. So an informative prior on at least one of these parameters.
- With τ^{2}, then ϕ and at least one of σ_{w}^{2} and τ^{2} require informative priors.
\square
- Informativeness: $\pi(\beta)$ can be a flat (improper)
- Without nugget, τ^{2}, can't identify both σ_{w}^{2} and ϕ (Zhang, 2004). With Matérn, can identify the product. So an informative prior on at least one of these parameters.
- With τ^{2}, then ϕ and at least one of σ_{w}^{2} and τ^{2} require informative priors.

Assume a Matérn covariance function with known v. If
prior on $\beta, \sigma_{w}^{2}, \phi$ is of the form $\frac{\pi(\phi)}{\left(\sigma^{2}\right)^{a+1}}$ with $\pi(\cdot)$ uniform, then we get imnroner nosterior if $a<\frac{1}{2}$

Priors...

- Informativeness: $\pi(\beta)$ can be a flat (improper)
- Without nugget, τ^{2}, can't identify both σ_{w}^{2} and ϕ (Zhang, 2004). With Matérn, can identify the product. So an informative prior on at least one of these parameters.
- With τ^{2}, then ϕ and at least one of σ_{w}^{2} and τ^{2} require informative priors.
- Assume a Matérn covariance function with known v. If the prior on $\beta, \sigma_{w}^{2}, \phi$ is of the form $\frac{\pi(\phi)}{\left(\sigma_{w}^{2}\right)^{a+1}}$ with $\pi(\cdot)$ uniform, then we get improper posterior if $a<\frac{1}{2}$.
- Informativeness: $\pi(\beta)$ can be a flat (improper)
- Without nugget, τ^{2}, can't identify both σ_{w}^{2} and ϕ (Zhang, 2004). With Matérn, can identify the product. So an informative prior on at least one of these parameters.
- With τ^{2}, then ϕ and at least one of σ_{w}^{2} and τ^{2} require informative priors.
- Assume a Matérn covariance function with known v. If the prior on $\beta, \sigma_{w}^{2}, \phi$ is of the form $\frac{\pi(\phi)}{\left(\sigma_{w}^{2}\right)^{a+1}}$ with $\pi(\cdot)$ uniform, then we get improper posterior if $a<\frac{1}{2}$.
- Shows the problem with using $\operatorname{IG}(\epsilon, \epsilon)$ priors for σ_{w}^{2} nearly improper. Safer is $\operatorname{IG}(a, b)$ with $a \geq 1$.
- Prediction of $Y\left(\mathbf{s}_{0}\right)$ at a new site \mathbf{s}_{0} with associated covariates $\mathbf{x}_{0} \equiv \mathbf{x}\left(\mathbf{s}_{0}\right)$.
- Predictive distribution $\pi\left(y\left(\mathbf{s}_{0}\right) \mid \mathbf{y}\right)=$

$$
\int \pi\left(y\left(\mathbf{s}_{0}\right) \mid m, \mathbf{S}_{m}^{*}, \mathbf{w}^{*}, \boldsymbol{\theta}, \mathbf{y}\right) \pi\left(m, \mathbf{S}_{m}^{*}, \mathbf{w}^{*}, \boldsymbol{\theta} \mid \mathbf{y}\right) d m d \mathbf{S}_{m}^{*} d \mathbf{w}^{*} d \boldsymbol{\theta}
$$

- \Longrightarrow easy Monte Carlo estimate using composition with Gibbs draws $\boldsymbol{\theta}^{(1)}, \ldots, \boldsymbol{\theta}^{(G)}$:
- For each $\boldsymbol{\theta}^{(g)}$ drawn from $\pi(\boldsymbol{\theta} \mid \mathbf{y}, X)$ draw $Y\left(\mathbf{s}_{0}\right)^{(g)}$ from $f\left(y\left(\mathbf{s}_{0} \mid \mathbf{y}, \boldsymbol{\theta}^{(g)}, X, \mathbf{x}_{0}\right)\right.$.

Results for NO_{2} modelling and validation.

Model	RMSPE	MAPE	Bias	RBias	NCov(\%)	G	P	G+P
AQUM	26.96	19.45	16.93	0.34	-	-	-	-
Kriging	20.12	15.26	3.48	0.07	96.13	-	-	-
Linear	13.66	10.45	-1.35	-0.03	99.83	105733	8002	113735
GP	15.14	12.39	2.48	0.05	98.32	2918	18594	21511
M_{1}	13.54	10.23	2.84	0.06	98.33	3828	51684	55512
M_{2}	10.78	8.17	1.12	0.02	99.16	4897	62710	67607
M_{3}	13.29	10.10	2.32	0.05	98.83	4765	61756	66521
M_{4}	14.72	10.93	4.51	0.09	94.34	5000	62603	67603

Table: Model choice measures for NO_{2}. Fitted $n=4822$, validation $n=601 \approx 12.4 \% . M_{1}, \ldots, M_{4}$ are models with fixed range parameters at $3000,600,300$ and 100 kilometres respectively. G and P are goodness-of-fit and Penalty according to the predictive model choice criteria (Gelfand and Ghosh, 1998).

Results for O_{3} modelling and validation.

Model	RMSPE	MAPE	Bias	RBias	NCov(\%)	G	P	G+P
AQUM	16.06	13.28	-8.79	-0.14	-	-	-	-
Kriging	8.95	7.08	-3.44	-0.06	93.31	-	-	-
Linear	9.01	7.29	-0.60	-0.01	99.45	76384	2010	78394
GP	9.60	7.90	2.36	0.03	100.0	1149	5992	7141
M_{1}	6.77	5.25	0.72	0.01	94.50	1387	18107	19494
M_{2}	6.53	5.12	0.72	0.01	96.70	1371	18716	20087
M_{3}	6.68	5.17	0.56	0.009	95.33	1366	18870	20236
M_{4}	8.09	5.98	0.41	0.006	96.42	1285	19139	20424
M_{5}	6.53	5.12	0.72	0.01	96.70	1370	18706	20076
M_{6}	6.82	5.27	0.74	0.01	93.95	1388	17941	19329

Table: Model choice measures for O_{3}. Fitting $n=3269$, validation $n=364 . M_{1}, \ldots, M_{4}$ are models with fixed range parameters as before and M_{5} and M_{6} are models with uniform and gamma prior distributions for the decay parameter ϕ.

Model	RMSPE	MAPE	Bias	RBias	NCov(\%)	G	P	$\mathrm{G}+\mathrm{P}$
AQUM	11.85	10.32	10.27	0.51	-	-	-	-
Kriging	3.82	2.99	0.09	0.005	88.60	-	-	-
Linear	5.65	4.69	0.32	0.02	89.23	91873	91973	183846
GP	5.71	4.72	1.10	0.05	85.34	721	3928	4649
M_{1}	3.29	2.55	-0.03	-0.002	89.70	595	7617	8212
M_{2}	3.45	2.65	-0.14	-0.007	89.03	585	8023	8608
M_{3}	3.56	2.72	-0.24	-0.01	89.70	554	7755	8309
M_{4}	4.81	3.39	-0.13	-0.007	91.36	539	8331	8870
M_{5}	3.46	2.67	-0.20	-0.01	91.02	574	7779	8353
M_{6}	3.28	2.55	-0.04	-0.002	89.70	593	7614	8207

Table: Model choice measures for PM_{10}. Fitting $n=2463$, validation $n=301 . M_{1}, \ldots, M_{4}$ are models with fixed range parameters as before and M_{5} and M_{6} are models with uniform and gamma prior distributions for the decay parameter ϕ.

Results for $\mathrm{PM}_{2.5}$ modelling and validation.

Model	RMSPE	MAPE	Bias	RBias	NCov(\%)	G	P	$\mathrm{G}+\mathrm{P}$
AQUM	7.26	5.41	4.77	0.34	-	-	-	-
Kriging	2.81	1.92	-0.76	-0.05	82.53	-	-	-
Linear	5.17	4.24	-0.43	-0.03	81.45	46590	46679	93268
GP	5.18	4.35	1.51	0.11	81.45	595	5466	6061
M_{1}	2.72	1.93	-0.52	-0.04	83.11	330	2765	3095
M_{2}	2.81	1.98	-0.62	-0.04	82.68	318	2819	3137
M_{3}	2.91	2.05	-0.56	-0.04	82.25	304	2883	3186
M_{4}	4.50	3.01	-0.57	-0.04	84.84	289	3126	3415
M_{5}	2.82	1.98	-0.62	-0.04	83.11	318	2821	3139
M_{6}	2.70	1.92	-0.77	-0.05	83.54	314	2651	2966

Table: Model choice measures for $\mathrm{PM}_{2.5}$. Fitting $n=1820$, validation $n=231 . M_{1}, \ldots, M_{4}$ are models with fixed range parameters as before and M_{5} and M_{6} are models with uniform and gamma prior distributions for the decay parameter ϕ.

Example of a local authority aggregated map

Figure: Annual map of ozone levels in 2011

Conclusions

(1) We have proposed flexible anisotropic models for spatial and spatio-temporal data.
© We can generate all sorts of anisotropy: sill, nugget and zonal anisotropy.
(3) Spatio-temporal moc els perform better out of sample predictions as we have illustrated with air pollution data.

Conclusions

(1) We have proposed flexible anisotropic models for spatial and spatio-temporal data.
(2) We can generate all sorts of anisotropy: sill, nugget and zonal anisotropy.
© Spatio-temporal models perform better out of sample predictions as we have illustrated with air pollution data.
(- A separate talk/paper discusses air pollution modelling and links pollution to health outcome data.

Conclusions

(1) We have proposed flexible anisotropic models for spatial and spatio-temporal data.
(2) We can generate all sorts of anisotropy: sill, nugget and zonal anisotropy.
(3) Spatio-temporal models perform better out of sample predictions as we have illustrated with air pollution data.

Conclusions

(1) We have proposed flexible anisotropic models for spatial and spatio-temporal data.
(2) We can generate all sorts of anisotropy: sill, nugget and zonal anisotropy.
(3) Spatio-temporal models perform better out of sample predictions as we have illustrated with air pollution data.
(9) A separate talk/paper discusses air pollution modelling and links pollution to health outcome data.

