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Example: UK air pollution data modelling

Easting
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Map of 323 local
authorities in
England for which
we have health
outcome data.

Red dots define the
corners of the 12 km
square grid cells
where we have
AQUM output.

Blue dots represent
the 142 AURN
air-quality
monitoring sites.
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What is anisotropy?

Modelling setup: Suppose that we have random variables
Y (s1), . . . ,Y (sn) where each si denotes a particular
location.

In general, consider a real-valued spatial process Y (s),
where s 2 D and D is the study region, usually a sub-space
of R2, England in the above example!

There are 3 main concepts in spatial statistics (in the
Matheron School):

1 Stationarity
2 Variogram
3 Isotropy

No formal model based inference for Y (s) yet.
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Stationarity

Suppose our spatial process has a mean, µ(s) = E(Y (s)),
and that the variance of Y (s) exists for all s.

The process is said to be strictly stationary (also called
strongly stationary) if, for any given n � 1, any set of n sites
s1, . . . ,sn and any h the distribution of Y (s1), . . . ,Y (sn) is
the same as that of Y (s1 + h), . . . ,Y (sn + h).

A less restrictive condition is given by weak stationarity
(also called second-order stationarity): A process is weakly
stationary if µ(s) = µ and Cov(Y (s),Y (s + h)) = C(h) for
all h such that s and s + h both lie in D.
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Notes on Stationarity

Weak stationarity says that the covariance between the
values of the process at any two locations s and s + h can
be summarized by a covariance function C(h) (sometimes
called a covariogram), and this function depends only on
the separation vector h.

Note that with all variances assumed to exist, strong
stationarity implies weak stationarity.

The converse is not true in general, but it does hold for
Gaussian processes
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Variogram

Semi-Variogram is defined as:

�(h) =
1
2

var(Y (s + h) � Y (s))

Simple calculation yields

2�(h) = 2 [C(0) � C(h)]

So given the covariance function C(·) we can determine
the semivariogram.

But the converse is not true, we can add ±a to C(·) and
obtain the same �(·).
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Isotropy
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If the semivariogram �(h) depends upon the separation
vector only through its length ||h|| then we say that the
process is isotropic.

For an isotropic process, �(h) is a real-valued function of a
univariate argument, and can be written as �(||h||).
Isotropic processes are popular because of their simplicity,
interpretability, and because a number of relatively simple
parametric forms are available as candidates for �(·).
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The most common covariance function

The Matérn correlation function is given by:

C(t ; �, ⌫) =
1

2⌫�1�(⌫)
(2
p
⌫�t)⌫K⌫(2

p
⌫�t), � > 0, ⌫ > 0,

where �(⌫) is the standard gamma function, K⌫ is the modified
Bessel function of second kind with order ⌫, and t = ||h|| is the
distance between two sites.

The parameter � controls the rate of decay of the
correlation as the distance t increases
The parameter ⌫ controls smoothness of the random field
Y (s).

⌫ = 1/2 =) C(t) = �2 exp(��t), t > 0; Exponential
Covariance Function
⌫ = 3/2, C(t) = �2(1 + �t) exp(��t), t > 0.
⌫! 1 =) C(t) = �2 exp(��2t2), t > 0; Gaussian
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Exponential Covariance Function

This is by far the most popular choice for modelers.

The correlation between two points distance t apart is
exp(��t).

The effective range, t0, as the distance at which this
correlation becomes negligible, equal to 0.05.

Setting
exp(��t0) = 0.05
=) t0 = � log(0.05)/�
=) t0 ⇡ 3/�

since log(0.05) ⇡ �3.
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Nugget

Recall �(h) = �(||h||) = C(0) � C(||h||).

So �(0) = 0. But often there are micro-scale variotion or
measurement error even at very small distances.

To tackle that we define the nugget

⌧2 ⌘ lim
t!0+

�(t).

This introduces a discontinuity at 0 for the covariogram
�(t).
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Sill

What happens to �(t) when t ! 1?

This asymptotic value is called the sill.

In our notation sill is given by ⌧2 + �2.

The sill minus the nugget, �2, is called the partial sill.

The effective range is the smallest distance for which the
semivariogram achieves the asymptotic sill.
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Three closed form Matérn covariograms:

1 Exponential: �(t) = ⌧2 + �2(1 � exp(��t)).
2 Gaussian: �(t) = ⌧2 + �2(1 � exp(��2t2)).
3 Matérn with ⌫ = 1.5. �(t) = ⌧2 + �2(1 � (1 + �t) exp(��t)).
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What is anisotropy?

Anisotropy is opposite of isotropy. For example,
If the variogram depends on angle it is angular anisotropy.

Similarly, sill and range anisotropy.

Geometric anisotropy is obtained by by stretching of an
isotropic model: �(h) = �0(

p
h0Qh) where �0(·) is isotropic

and Q is a positive definite matrix.

Zonal anisotropy. Variogram only depends on some
components of the vector h. Also called stratified
anisotropy.

See Chapter 2 of Chilès and Delfiner (2012).
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How can we generate anisotropic processes?

Answer depends on what type of anisotropy (e.g.
geometric or zonal) we want.

It is difficult to decide the type of anisotropy when all we
have available is a realisation y(s1), . . . , y(sn) along with
the locations s1, . . . ,sn).

Hence it is difficult to specify a flexible covariance function
C()̇.

Further problem arises due to the positive definiteness
requirement of the implied covariance matrix of any n
realisations Y (s).
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What’s available in the literature?

Large literature on constructing non-stationary models:
Sampson and Guttorp (1992), Schmidt and O’hagan
(2003).

Kernel mixing: Higdon (1998), Paciorek and Schervish
(2006).

Spatially varying cross-covariance models. Guhaniyogi et
al. (2013).

Spatial basis functions and non-stationary Matérn
covariance functions. Katzfuss (2013) and Konomi et al.
(2014).

More comprehensive literature citations in Section 3.2 of
the Bayesian modelling book on spatial statistics:
Banerjee, Carlin and Gelfand (2015).
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Our main idea

To use Gaussian predictive process to generate anisotropy.

Suppose there are m knot-locations s⇤1, . . . ,s
⇤
m. We shall

choose these and m later.

Assume a latent Gaussian process w(s) with realisations
w⇤ = (w(s⇤1), . . . ,w(s⇤m)).

At any other location s, define ˜w(s) = E [w(s)|w⇤] .

This ˜w(s) defines a flexible anisotropic valid spatial
process.
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An example

Consider D to be R1, let m = 1 and s⇤1 = 0, i.e. the single
knot at the origin.

Assume exponential covariance function with decay
parameter � > 0 and variance 1.

Then w̃(s) = exp(��|s|)w⇤(0) where w⇤(0) ⇠ N(0,1).

Now Cov(w̃(s), w̃(s0)) will depend not only on |s � s0| but
on both s and s0.

Further complexity is introduced by taking m > 1, and
varying the positioning of the knots s⇤1, . . . ,s

⇤
m at random or

according to a specific clustering mechanism.
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Some details

For any s, w̃(s) = c⇤(s)T S�1
w⇤w

⇤ where c⇤(s) denotes the
m ⇥ 1 correlation vector between w(s) and w⇤, given by⇣
C(|s � s⇤1|), . . . ,C(|s � s⇤m|)

⌘T
and Sw⇤ is the correlation

matrix of w⇤.
Consider two locations s and s + h. Now:

2�̃(s,h) = Var [w̃(s) � w̃(s + h)]
= E [w̃(s) � w̃(s + h)]2

= (c⇤(s) � c⇤(s + h))T S�1
w⇤ (c

⇤(s) � c⇤(s + h)) .

Depends on both s and h.
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Exploring correlation structure with �̃(s,h).

Is �̃(s,h) a legitimate semivariogram?

No! Its not an even function of h, i.e. �̃(s,h) , �̃(s,�h).

We still can treat this as a function of |h| and study its
properties for varying s and h and the knots.

We fix a central location s⇤⇤, assumed to be the centroid
and then calculate distance between s⇤⇤ and s⇤⇤ + h.
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How do we choose the knots?

Space filling?

Clustering?

Random placement?

In general, assume a point process, i.e. a random
distribution ⇡(S⇤m) for s⇤1, . . . ,s

⇤
m.

But how about m? We can assume that to be unknown as
well.

Assume ⇡(m) for m and think of ⇡(S⇤m) conditional on m.
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Return to �̃(s,h)

It is random if m and S⇤m are.

We can use the expected value. But that is not available in
closed form.

So, we use Monte Carlo to estimate.

We generate an m` from ⇡(m) and and a set of m` random
knots S⇤ml

from ⇡(S⇤m`).

Conditional on these values, evaluate the inner expectation
E

h�
w̃(s) � w̃(s + h)

 2 |ml ,S⇤ml

i
.

Finally, we approximate �̃(s,h) by

1
2L

LX

`=1

E
h�

w̃(s) � w̃(s + h)
 2 |ml ,S⇤ml

i
.
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Four designs for knot-locations
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Consider D = [�1,1] in one and D = [�1,1] ⇥ [�1,1] in two
dimensions.

1 Space filling with m = 25
2 Complete Spatial Randomness (CSR) with m = 25.
3 All the knots clustered within the central quarter:

[�0.25,0.25] with m = 25.
4 CSR but with m following uniform between 1 to 25.
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One dimensional example
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Solid line: Semi variogram in positive and dotted line is in
the negative direction.
Compare with the figure for isotropic correlation structure
shown before.
Effect of the space filling knots are seen in the top left.
Knots clustered in a smaller sub-region is seen in the
bottom left panel.
The correlation curves become ‘more’ smooth when knots
are placed at random.Sujit Sahu 24



Two dimensional example
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Semivariogram plots against radial distance.
The shape of the variogram depends on where the knots
are placed.
Shows angular anisotropy as well.
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Two dimensional example ...
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Semivariogram plots against angle.
There may not be any sill.
Hence, the GPP can generate very flexible anisotropic
processes.
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Generating zonal anisotropy
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Consider the scallop data set from Ecker and Gelfand.
Top left: Theoretical contours for an isotropic model.
Top right: Empirical Semivariogram Contour (ESC) plot of
the observed data.
Bottom left: Theoretical SC plot for a fixed space filling
knot design with 100 knots.
Bottom right: TSC plot for a random design.
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Hierarchical modeling

Basic Model:

Y (s) = xT (s)�+ w̃(s) + ✏(s)

The residual is partitioned into two pieces: one spatial,
w̃(s), and one non-spatial, ✏(s).

w̃(s) is a non-stationary and anisotropic Gaussian process
depending on the parameters �2

w , decay parameter �, and
smoothness ⌫ and the number and positioning of the knot
locations.

✏(s) adds the nugget (⌧2) effect.

w̃(s) reduces dimension if n > m. Otherwise, it may
increase it to achieve flexibility.
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Interpretations attached to ✏(s)

pure error term; model is not perfectly spatial;

⌧2 and �2
w are known as variance components.

measurement error or replication variability causing
discontinuity in spatial surface Y (s);

microscale uncertainty; distances smaller than the smallest
inter-location distance, independence assumed.
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Likelihood and priors

Conditional on m assume a non-homogenous Poisson
Process model for the knots S⇤m.

⇡ (S⇤m) = (�(D))�m
mY

j=1

�(sj),

where �(D) =
R
D �(s)ds and �(s) is a given intensity

function which is constant for CSR.
The logarithm of the full posterior distribution,
log (⇡ (m,S⇤m,w (S⇤m) , ✓|z)), is given by:

/ �n
2 log(⌧2)
� 1

2⌧2
Pn

i=1

⇣
z(si) � x(si)

T� � w̃(si)
⌘2

�m log(�(D)) +
Pm

j=1 log(�(sj))

�m
2 log(�2

w ) � 1
2 log |Sw | � 1

2�2
w
(w⇤)T S�1

w w
+ log(⇡(✓))

where ✓ = (�, ⌧2,�2
w , ⌫, �)

T and ⇡(✓) denotes the prior.
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Priors...

Informativeness: ⇡(�) can be a flat (improper)

Without nugget, ⌧2, can’t identify both �2
w and � (Zhang,

2004). With Matérn, can identify the product. So an
informative prior on at least one of these parameters.

With ⌧2, then � and at least one of �2
w and ⌧2 require

informative priors.

Assume a Matérn covariance function with known ⌫. If the
prior on �,�2

w , � is of the form ⇡(�)

(�2
w )a+1 with ⇡(·) uniform,

then we get improper posterior if a < 1
2 .

Shows the problem with using IG(✏, ✏) priors for �2
w –

nearly improper. Safer is IG(a,b) with a � 1.
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Spatial prediction (Bayesian kriging)

Prediction of Y (s0) at a new site s0 with associated
covariates x0 ⌘ x(s0).
Predictive distribution ⇡(y(s0)|y) =

Z
⇡(y(s0)|m,S⇤m,w⇤, ✓,y)⇡(m,S⇤m,w⇤, ✓|y)dmdS⇤mdw⇤d✓

=) easy Monte Carlo estimate using composition with
Gibbs draws ✓(1), . . . , ✓(G):
For each ✓(g) drawn from ⇡(✓|y,X ) draw Y (s0)(g) from
f (y(s0|y, ✓(g),X ,x0).
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Results for NO2 modelling and validation.

Model RMSPE MAPE Bias RBias NCov(%) G P G+P
AQUM 26.96 19.45 16.93 0.34 – – – –
Kriging 20.12 15.26 3.48 0.07 96.13 – – –
Linear 13.66 10.45 –1.35 –0.03 99.83 105733 8002 113735
GP 15.14 12.39 2.48 0.05 98.32 2918 18594 21511
M1 13.54 10.23 2.84 0.06 98.33 3828 51684 55512
M2 10.78 8.17 1.12 0.02 99.16 4897 62710 67607
M3 13.29 10.10 2.32 0.05 98.83 4765 61756 66521
M4 14.72 10.93 4.51 0.09 94.34 5000 62603 67603

Table: Model choice measures for NO2. Fitted n = 4822, validation
n = 601 ⇡ 12.4%. M1, ...,M4 are models with fixed range parameters
at 3000, 600, 300 and 100 kilometres respectively. G and P are
goodness-of-fit and Penalty according to the predictive model choice
criteria (Gelfand and Ghosh, 1998).
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Results for O3 modelling and validation.

Model RMSPE MAPE Bias RBias NCov(%) G P G+P
AQUM 16.06 13.28 –8.79 –0.14 – – – –
Kriging 8.95 7.08 –3.44 –0.06 93.31 – – –
Linear 9.01 7.29 –0.60 –0.01 99.45 76384 2010 78394
GP 9.60 7.90 2.36 0.03 100.0 1149 5992 7141
M1 6.77 5.25 0.72 0.01 94.50 1387 18107 19494
M2 6.53 5.12 0.72 0.01 96.70 1371 18716 20087
M3 6.68 5.17 0.56 0.009 95.33 1366 18870 20236
M4 8.09 5.98 0.41 0.006 96.42 1285 19139 20424
M5 6.53 5.12 0.72 0.01 96.70 1370 18706 20076
M6 6.82 5.27 0.74 0.01 93.95 1388 17941 19329

Table: Model choice measures for O3. Fitting n = 3269, validation
n = 364. M1, ...,M4 are models with fixed range parameters as before
and M5 and M6 are models with uniform and gamma prior
distributions for the decay parameter �.
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Results for PM10 modelling and validation.

Model RMSPE MAPE Bias RBias NCov(%) G P G+P
AQUM 11.85 10.32 10.27 0.51 – – – –
Kriging 3.82 2.99 0.09 0.005 88.60 – – –
Linear 5.65 4.69 0.32 0.02 89.23 91873 91973 183846
GP 5.71 4.72 1.10 0.05 85.34 721 3928 4649
M1 3.29 2.55 –0.03 –0.002 89.70 595 7617 8212
M2 3.45 2.65 –0.14 –0.007 89.03 585 8023 8608
M3 3.56 2.72 –0.24 –0.01 89.70 554 7755 8309
M4 4.81 3.39 –0.13 –0.007 91.36 539 8331 8870
M5 3.46 2.67 –0.20 –0.01 91.02 574 7779 8353
M6 3.28 2.55 –0.04 –0.002 89.70 593 7614 8207

Table: Model choice measures for PM10. Fitting n = 2463, validation
n = 301. M1, ...,M4 are models with fixed range parameters as before
and M5 and M6 are models with uniform and gamma prior
distributions for the decay parameter �.
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Results for PM2.5 modelling and validation.

Model RMSPE MAPE Bias RBias NCov(%) G P G+P
AQUM 7.26 5.41 4.77 0.34 – – – –
Kriging 2.81 1.92 –0.76 –0.05 82.53 – – –
Linear 5.17 4.24 –0.43 –0.03 81.45 46590 46679 93268
GP 5.18 4.35 1.51 0.11 81.45 595 5466 6061
M1 2.72 1.93 –0.52 –0.04 83.11 330 2765 3095
M2 2.81 1.98 –0.62 –0.04 82.68 318 2819 3137
M3 2.91 2.05 –0.56 –0.04 82.25 304 2883 3186
M4 4.50 3.01 –0.57 –0.04 84.84 289 3126 3415
M5 2.82 1.98 –0.62 –0.04 83.11 318 2821 3139
M6 2.70 1.92 –0.77 –0.05 83.54 314 2651 2966

Table: Model choice measures for PM2.5. Fitting n = 1820, validation
n = 231. M1, ...,M4 are models with fixed range parameters as before
and M5 and M6 are models with uniform and gamma prior
distributions for the decay parameter �.
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Example of a local authority aggregated map
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Figure: Annual map of ozone levels in 2011
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Conclusions

1 We have proposed flexible anisotropic models for spatial
and spatio-temporal data.

2 We can generate all sorts of anisotropy: sill, nugget and
zonal anisotropy.

3 Spatio-temporal models perform better out of sample
predictions as we have illustrated with air pollution data.

4 A separate talk/paper discusses air pollution modelling and
links pollution to health outcome data.
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