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Goals

I Construct state-of-the-art spatio-temporal model for
predicting air pollution at high spatial resolution across
England.

I NO2, O3, PM10 and PM2.5 monitored at 142 urban and rural
locations

I Output from computer model (AQUM) on 1km2 grid.
I Fusion of modelled and measured data sources achieved using

anisotropic Gaussian predictive process model, where AQUM
included as a regressor.

I
See technical report for details

www.southampton.ac.uk/~sks/research/papers/anisotropy4.pdf

I Build better models for disease risk given an air pollution
exposure, that can adequately represent the spatio-temporal
pattern in disease risk.

I Utilising the new models above within a two-stage framework,
estimate the health e↵ects of air pollution across England.



England LHA respiratory admissions data
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Typical model for spatial heath counts

Ykt |Ekt ,Rkt ⇠ Poisson(EktRkt)

ln(Rkt) = �0 + xkt� + z

>
kt↵+ �kt ,

t = 1, . . . ,T time points

k = 1, . . . ,N regions

Where

Ykt health counts Ekt expected cases
Rkt health risk �kt random e↵ect
z

>
kt↵ other covariate e↵ects �0 intercept
xkt air pollution � pollution e↵ect



Statistical considerations

Unmeasured confounding: Air pollution, and the other measured
covariates do not account for all variation. Adding a set of
spatio-temporal random e↵ects, �kt can o↵er a solution.

How should �kt be structured in space and time?

Misalignment: The air pollution model estimates the true
exposure surface Z (skj , t), by a set of predictive distributions at
grid locations, {skj}.

Health counts are regional totals. How can we reconcile these
quantities? Could we simply average the air pollution?

Uncertainty: The posterior density of Z (skj , t) is available via
MCMC samples, and therefore uncertainty in air pollution is
quantified.

How should this source of uncertainty be incorporated into the
health model? What e↵ect does this have on estimation?



Unmeasured confounding: An existing model for �kt

Rushworth et al. (2014) propose the ‘global’ model:

ln(Rkt) = �0 + xkt� + z

>
kt↵+ �kt

Letting �t = (�1t , . . . ,�Nt), where t = 1, . . . ,T , then:

�1 ⇠ N
�
0,�2

Q(W, ⇢)�1
�

�t |�t�1 ⇠ N
�
↵�t�1,�

2
Q(W, ⇢)�1

�
for t � 2

Q = ⇢ [diag(W1)�W] + (1� ⇢)I

W = spatial (binary) neighbours matrix.



Unmeasured confounding: a more flexible model for �kt

Q(W, ⇢) restricts the range of surfaces that can be fitted.

Solution: Treat non-zero elements of W as random variables
w+
ij 2 [0, 1].

Control model complexity using normal prior on transformed w+
ij :

ln

 
w+
ij

1� w+
ij

!
⇠ N

�
µ, ⌧2

�

µ is chosen to be large and positive reflecting prior preference for
spatial smoothness.



English respiratory data: random e↵ects

We will compare the random e↵ects models

Model type Random e↵ects Adjacency model
GLM NA —
Non-adaptive �kt w+

kt = 1
Adaptive �kt logit(w+

kt) ⇠ N(µ, ⌧2)

Under the risk specification

ln(Rkt) = �0 + xkt� + jobseekerskt↵1 + housepricekt↵2 + �kt



English respiratory data: random e↵ects

Pollutant No random e↵ects (GLM) Non-adaptive �kt Adaptive �kt

NO2 1.151 (1.144, 1.158) 1.057 (1.045, 1.069) 1.048 (1.036, 1.060)
PM10 1.013 (1.007, 1.020) 1.007 (0.998, 1.015) 1.006 (0.995, 1.015)
PM2.5 1.013 (1.007, 1.019) 1.006 (0.997, 1.014) 1.006 (0.997, 1.016)

O3 0.981 (0.974, 0.987) 0.983 (0.972, 0.995) 0.980 (0.965, 0.993)

Table : Risks and 95% CIs for 1-standard deviation increases in pollutant

Simpler models have a tendency to overestimate air-pollution

e↵ects.



�kt estimates and adjacency modelRespiratory:  P[ wij < 0.5 ] > 0.99
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Air pollution - uncertainty

1st stage model yields predictive distributions for air pollution in
space and time.

This uncertainty should be passed through the 2nd stage health
model so that resulting health estimates represent all available
information.

Some possible strategies:

(1) Treat posterior mean pollution concentrations as true values
(no uncertainty)

(2) Directly feed samples from the posterior air pollution density
through the health model

(3) Treat the posterior pollution densities as prior distributions in
the health model (e.g. using a Gaussian approximation)



Exploring the English respiratory data: uncertainty

Compare approaches to incorporating pollution uncertainty:

(1) xkt = x̄kt

(2) xkt ⇠ DU over posterior air pollution samples

(3) xkt ⇠ MVN estimated from posterior samples

Again, under the risk specification

ln(Rkt) = �0 + xkt� + jobseekerskt↵1 + housepricekt↵2 + �kt



Results – uncertainty

Pollutant (1) xkt = x̄kt (2) xkt ⇠ DU (3) xkt ⇠ MVN
NO2 1.048 (1.036, 1.060) 1.001 (0.999, 1.003) 1.035 (1.030, 1.041)
PM10 1.006 (0.995, 1.015) 1.000 (0.998, 1.003) 1.025 (0.999, 1.043)
PM2.5 1.006 (0.997, 1.016) 1.001 (0.997, 1.004) 1.008 (0.995, 1.062)

O3 0.980 (0.965, 0.993) 1.000 (0.999, 1.001) 0.996 (0.967, 1.000)

Table : Risks and 95% CIs for 1-standard deviation increases in pollutant



Conclusions

I Choices for handling spatio-temporal autocorrelation have
important consequences for the estimating the e↵ects of air
pollution.

I It is important to treat air pollution exposure as uncertain, as
it is rarely realistic to assume exposure is observed (or
predicted) without error.

Future work:

I Simulate to determine bias and coverage properties for �

I Improve on current Gaussian approximation to air pollution
posterior

I Multivariate disease responses



Thank you very much for listening!


