Gaussian Markov Random Field models for capturing localized residual spatio-temporal confounding in air pollution and health studies

Alastair Rushworth

International Conference of the Royal Statistical Society, Sheffield 2^{nd} September 2014

Acknowledgements

Work in this talk part of a larger collaboration:

University of Glasgow

UK Met Office

Funded by the EPSRC

{ Duncan Lee }
Richard Mitchell }

University of Southampton Sabyasachi Mukhopadhyay

Paul Agnew
 Christophe Sarran

Context: England LHAs - Respiratory admission SIR

Date = 12-2004

Modelling disease counts in space

Typical spatial model might look like

$$\begin{aligned} &Y_i|E_i, R_i \quad \sim \quad \text{Poisson}(E_i R_i) \\ &\ln(R_i) \quad = \quad \beta_0 + \sum_{j=1}^p x_{ij} \beta_j + \phi_i, \qquad i = 1, \dots, N \end{aligned}$$

Where

 Y_i disease counts R_i disease risk E_i expected cases $\sum_{j=1}^{p} x_{ij}\beta_j$ covariates

$$\pi(oldsymbol{\phi}) \propto \exp\left[-rac{1}{2\sigma^2}\left(\sum_{i\sim j} w_{ij}(\phi_i-\phi_j)^2
ight)
ight]$$

Localised smoothing

Different strategies achieving this:

Treat ϕ 's prior variance, σ , as spatially varying

Brewer and Nolan (2007); Reich and Hodges (2008)

Treat the weights w_{ij} as random variables

▶ Ma, Carlin and Banerjee (2010); Lee and Mitchell (2013)

Use a clustering or grouping prior for the random effects

Richardson and Green (2002); Knorr-Held and Raßer (2000)

CAR2 model Ma, Carlin and Banerjee (2010)

Starting with Poisson model and Intrinsic CAR for random effects:

$$Y_i|E_i, R_i \sim Poisson(E_iR_i)$$

$$\log(R_i) = \beta_0 + \sum_{j=1}^p x_{ij}\beta_j + \phi_i, \quad i = 1, \dots, N$$

$$p(\phi|\sigma, \{w_{ij}\}) = C(\sigma, \{w_{ij}\}) \exp\left(-\frac{1}{2\sigma^2}\sum_{i \sim j} w_{ij}(\phi_i - \phi_j)^2\right)$$

Normalising term $C(\sigma, \{w_{ij}\})$ included to emphasise that w_{ij} is now being treated as unknown.

CAR2 model

Ma, Carlin and Banerjee (2010)

Idea: Call the non-zero w_{ij} , w_{ij}^+ , and treat as Bernoulli random variables with unknown probabilities, p_{ij} .

Transform and smooth p_{ij} using a further CAR prior.

$$w_{ij}^{+}|p_{ij} \sim Bernoulli(p_{ij}) \text{ and } logit(p_{ij}) = \mathbf{z}_{ij}^{'} \boldsymbol{\gamma} + \theta_{ij}$$

 $p(\boldsymbol{\theta}|\zeta) \propto \exp\left(-\frac{1}{2\zeta^{2}}\sum_{ij\sim kl}(\theta_{ij} - \theta_{kl})^{2}
ight)$

Pros: Maintains binary nature of w_{ij}

Cons: Assumes relatively strong smoothness over the w_{ij} ; a lot of parameters to estimate ϕ , w_{ij} , θ that can be hard to identify.

A localised model in space and time

Poisson model for counts in space and time (indexed by *i* and *j*, respectively)

$$\begin{array}{rcl} Y_{ij}|E_{ij},R_{ij} & \sim & \mathsf{Poisson}(E_{ij}R_{ij}) \\ & \mathsf{log}(R_{ij}) & = & \beta_0 + \phi_{ij}, \quad i = 1,\ldots,N \text{ and } j = 1,\ldots,T \end{array}$$

Letting $\tilde{\phi}_t = (\phi_{1t}, \dots, \phi_{Nt})$, where $t = 1, \dots, T$.

$$f(ilde{\phi}_1,\ldots, ilde{\phi}_T) = f(ilde{\phi}_1)\prod_{t=2}^T f(ilde{\phi}_t| ilde{\phi}_{t-1}),$$

where

$$\begin{split} \tilde{\boldsymbol{\phi}}_1 &\sim & \mathsf{N}\left(\boldsymbol{0}, \sigma^2 \boldsymbol{Q}(\boldsymbol{W}, \boldsymbol{\epsilon})\right)^{-1} \\ \tilde{\boldsymbol{\phi}}_t | \tilde{\boldsymbol{\phi}}_{t-1} &\sim & \mathsf{N}\left(\alpha \tilde{\boldsymbol{\phi}}_{t-1}, \sigma^2 \boldsymbol{Q}(\boldsymbol{W}, \boldsymbol{\epsilon})^{-1}\right). \end{split}$$

A localised model in space and time

Idea: Treat the non-zero elements of w_{ij} , w_{ij}^+ , as random variables on [0, 1].

Then transform using $logit(w_{ij}^+) = z_{ij}$ and smooth these using a Leroux prior.

$$p(z_{ij}) \propto \exp\left[-rac{1}{2 au^2}\left(
ho\sum_{ij\sim kl}(z_{ij}-z_{kl})^2+(1-
ho)\sum_{ij}(z_{ij})^2
ight)
ight]$$

Pros: Treating w_{ij} as non-binary makes things slightly easier; Leroux prior is a bit more flexible than the Intrinsic CAR model.

Cons: Still a lot of parameters to estimate

Illustrative simulations

- English local authorities used as a spatial template
- What happens to boundary identification with increased temporal replication?
- What effect does 'smoothing' boundaries have? Can ρ be fixed?

Correlated boundaries: T = 10; ρ = 0.993

Uncorrelated boundaries: T = 10; $\rho = 0$

Validation of adaptive model by simulation

		RMSE		
		non		ho
		adaptive	ho = 0	varies
Temporal replication	Time = 1	0.1143	0.0971	0.0728
	Time = 5	0.0865	0.0499	0.0525
	Time = 20	0.0646	0.0390	0.0405
Relative risk	a = 1	0.0363	0.0386	0.0397
	a = 2	0.0868	0.0497	0.0524
	a = 3	0.1085	0.0587	0.0611
Expected cases	E = 25	0.1253	0.0686	0.0726
	E = 75	0.0866	0.0495	0.0521
	E = 200	0.0613	0.0375	0.0391

Application to England LHAs - Data

Date = 12-2004

Application to England LHAs - Results

October 2001

Application to England LHAs - Results

Posterior medians of adjacency elements, w_ij

Comments

Adaptive model is succesful at identifying boundaries

- Simulation shows that performance is generally much better than for a standard model
- ► The prior distribution for boundaries is attractive as it encourages w_{ij} = 1 or w_{ij} = 0.
- Computation is important, and this model exploits matrix sparsity for speed.

In general, difficult to incorporate information about likely discontinuity structure into prior - compromise sometimes is required due to computational constraints:

- This is why CAR priors are nice: (matrix) sparsity; well established tricks for model-fitting; easy to write very efficient code.
- Example of alternative: Knorr-Held and Raßer (2000) use clustering prior that can induce smoothness; but requires RJMCMC.

Thanks for listening!

Some references

Besag, J., J. York, and A. Mollie (1991). Bayesian image restoration with two applications in spatial statistics. *Annals of the Institute of Statistics and Mathematics*

Lee, D. and R. Mitchell (2013). Locally adaptive spatial smoothing using conditional auto-regressive models. *Journal of the Royal Statistical Society: Series C*

Leroux, B., X. Lei, and N. Breslow. (1999). Estimation of disease rates in small areas: A new mixed model for spatial dependence, *Chapter Statistical Models in Epidemiology, the Environment and Clinical Trials, Springer-Verlag, New York.*

Ma, H. and Carlin, B. (2010) Hierarchical and Joint Site-Edge Methods for Medicare Hospice Service Region Boundary Analysis. *Biometrics*