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Context: England LHAs - Respiratory admission SIR
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Modelling disease counts in space

Typical spatial model might look like

Yi |Ei ,Ri ∼ Poisson(EiRi )

ln(Ri ) = β0 +

p∑
j=1

x ijβj + φi , i = 1, . . . ,N

Where

Yi disease counts Ri disease risk
Ei expected cases

∑p
j=1 xijβj covariates

π(φ) ∝ exp

− 1

2σ2

∑
i∼j

wij(φi − φj)2




Localised smoothing
Different strategies achieving this:

Treat φ’s prior variance, σ, as spatially varying

I Brewer and Nolan (2007); Reich and Hodges (2008)

Treat the weights wij as random variables

I Ma, Carlin and Banerjee (2010); Lee and Mitchell (2013)

Use a clustering or grouping prior for the random effects

I Richardson and Green (2002); Knorr-Held and Raßer (2000)



CAR2 model
Ma, Carlin and Banerjee (2010)

Starting with Poisson model and Intrinsic CAR for random effects:

Yi |Ei ,Ri ∼ Poisson(EiRi )

log(Ri ) = β0 +

p∑
j=1

xijβj + φi , i = 1, . . . ,N

p(φ|σ, {wij}) = C (σ, {wij}) exp

− 1

2σ2

∑
i∼j

wij(φi − φj)2


Normalising term C (σ, {wij}) included to emphasise that wij is
now being treated as unknown.



CAR2 model
Ma, Carlin and Banerjee (2010)

Idea: Call the non-zero wij , w
+
ij , and treat as Bernoulli random

variables with unknown probabilities, pij .

Transform and smooth pij using a further CAR prior.

w+
ij |pij ∼ Bernoulli(pij) and logit(pij) = z

′
ijγ + θij

p(θ|ζ) ∝ exp

− 1

2ζ2

∑
ij∼kl

(θij − θkl)2


Pros: Maintains binary nature of wij

Cons: Assumes relatively strong smoothness over the wij ; a lot of
parameters to estimate φ,wij ,θ that can be hard to identify.



A localised model in space and time

Poisson model for counts in space and time (indexed by i and j ,
respectively)

Yij |Eij ,Rij ∼ Poisson(EijRij)

log(Rij) = β0 + φij , i = 1, . . . ,N and j = 1, . . . ,T

Letting φ̃t = (φ1t , . . . , φNt), where t = 1, . . . ,T .

f (φ̃1, . . . , φ̃T ) = f (φ̃1)
T∏
t=2

f (φ̃t |φ̃t−1),

where

φ̃1 ∼ N
(
0, σ2Q(W , ε)

)−1

φ̃t |φ̃t−1 ∼ N
(
αφ̃t−1, σ

2Q(W , ε)−1
)
.



A localised model in space and time

Idea: Treat the non-zero elements of wij , w
+
ij , as random variables

on [0, 1].

Then transform using logit(w+
ij ) = zij and smooth these using a

Leroux prior.

p(zij) ∝ exp

− 1

2τ2

ρ∑
ij∼kl

(zij − zkl)
2 + (1− ρ)

∑
ij

(zij)
2



Pros: Treating wij as non-binary makes things slightly easier;
Leroux prior is a bit more flexible than the Intrinsic CAR model.

Cons: Still a lot of parameters to estimate



Illustrative simulations
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I English local authorities
used as a spatial template

I What happens to boundary
identification with increased
temporal replication?

I What effect does
‘smoothing’ boundaries
have? Can ρ be fixed?



Correlated boundaries: T = 10; ρ = 0.993



Uncorrelated boundaries: T = 10; ρ = 0



Validation of adaptive model by simulation

RMSE
non ρ

adaptive ρ = 0 varies

Temporal
replication

Time = 1 0.1143 0.0971 0.0728
Time = 5 0.0865 0.0499 0.0525
Time = 20 0.0646 0.0390 0.0405

Relative
risk

a = 1 0.0363 0.0386 0.0397
a = 2 0.0868 0.0497 0.0524
a = 3 0.1085 0.0587 0.0611

Expected
cases

E = 25 0.1253 0.0686 0.0726
E = 75 0.0866 0.0495 0.0521
E = 200 0.0613 0.0375 0.0391



Application to England LHAs - Data
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Application to England LHAs - Results
October 2001
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Application to England LHAs - Results

Posterior medians of adjacency elements, w_ij
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Comments
Adaptive model is succesful at identifying boundaries

I Simulation shows that performance is generally much better
than for a standard model

I The prior distribution for boundaries is attractive as it
encourages wij = 1 or wij = 0.

I Computation is important, and this model exploits matrix
sparsity for speed.

In general, difficult to incorporate information about likely
discontinuity structure into prior - compromise sometimes is
required due to computational constraints:

I This is why CAR priors are nice: (matrix) sparsity; well
established tricks for model-fitting; easy to write very efficient
code.

I Example of alternative: Knorr-Held and Raßer (2000) use
clustering prior that can induce smoothness; but requires
RJMCMC.
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