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Background

I Importance: air pollution is well known to have a negative
impact on human health and is still an important public
health issue.

I London has a particularly rich history of issues with air
pollution and it’s subsequent effects. eg. ’Pea-soupers’ and
the ’Great smog’.

I Estimated 4000 additional deaths due to poor air quality alone
in London (Miller, 2010).

I Difficult to unpick the different contributors to ill health
without detailed data for risk factors and pollution exposure.



Goals

I Quantify the impacts of pollutants on respiratory health
in Greater London using an ecological design and data at
the small area level

I Investigate the effects of different pollutants, and composite
indicators.

I Adequately account for unmeasured confounding

I Achieve some level of computational ease - important if
models are to be widely adopted.



Talk structure

I Introducing the London data

I Importance of spatio-temporal modelling

I Results

I Conclusions and discussion.



Data

I London has 624 (non-overlapping) electoral wards for which
data are available for the period spanning 2002 to 2009
inclusive.

I Health data are available as annualised total of respiratory
hospital admissions for each of the areal units.

I Modelled air pollution maps available from DEFRA
(www.uk-air.defra.gov.uk)

I Covariate data Average house prices (Price) and proportion of
people claiming jobseekers allowance (JSA)

Both JSA and Price are proxy measures for income and housing
deprivation.



Data summaries

I Spatially averaged respiratory admission and pollutant
concentrations (µgm−3) between 2002 and 2008.

2002 2003 2004 2005 2006 2007 2008
Resp. 117.00 126.00 132.00 143.00 141.00 144.00 151.00
PM10 17.60 20.20 24.60 23.40 22.70 23.80 20.30
PM2.5 11.50 17.10 16.70 14.90 15.10 13.50 14.10

CO 372.00 372.00 343.00 338.00 264.00 251.00 229.00
NO2 34.80 36.70 31.90 33.70 32.40 34.40 30.30
NOX 59.50 62.00 53.70 56.30 53.10 57.80 50.10
SO2 3.75 6.02 3.10 3.02 3.08 3.16 2.37



Data visualisation - SIR

As an exploratory measure we plot the Standardised Incidence
Ratio (SIR) for each areal unit i , where

SIRi =
Observed Incidencei
Expected Incidencei

Where the expected number of cases are calculated using external
standardisation based on the population, gender and age
distribution of each area.



SIR - London respiratory admissions data (2001)
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PM10 - London air pollution data (2001)
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London house prices (2001)
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Residual structure - GLM

Fitting the simple model for counts Yij using GLM in R....

Yij |Eij ,Rij ∼ Poisson(EijRij)

ln(Rij) = α + JSMijβ1 + Priceβ2 + Pollijβ3

...but residuals are spatially
correlated...
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Morans I p-value

GLM 0.44 0.00



Models for spatial confounding

Introduce a set of spatially smooth random effects φ following a
Gaussian Markov Random Field (GMRF) prior, options include:

I Intrinsic Autoregressive prior (Besag et al. (1991)); assumes
strong smoothness of random effects.

I Besag-York-Mollie (Besag et al. (1991)); 2 sets of random
effects (indep + spatial).

I Leroux prior (Leroux et al. (1999)); both indep and intrinsic
models are special cases.

...and others. Also possible to use a geostatistical model, splines or
other smoothers.



Models for spatial confounding
Leroux prior in space

Overall model is now

Yij |Eij ,Rij ∼ Poisson(EijRij)

ln(Rij) = α + JSMijβ1 + Priceijβ2 + PM10β3 + φi

Where φ = (φ1, . . . , φp) and

φ ∼ N
(
0, σ2 [ρW ∗ + (1− ρ)I ]−1

)
Where W ∗ is diag(W1T )−W and W is the adjacency matrix.

Need some additional machinery to allow the random effects
dependence in time as well as space.



Other models for residual spatio-temporal structure

Many exist, although mainly used in settings where no covariates
available.

I Bernardinelli et al. (1995) - spatially varying slopes and
intercepts describing linear temporal changes

I MacNab and Dean (2001) - spatially varying spline
components to describe non-linear temporal changes.

I Knorr-Held (2000) - studies different forms of space time
interaction

I Ugarte. et al (2012) - P-spline ANOVA approach

I Lawson. et al (2012) - Bayesian mixture, some emphasis on
clustering of temporal patterns



Models for spatio-temporal confounding
Leroux prior in space and time

Let φ̃t = (φt1, . . . , φtN). Assume a model of the form

f (φ̃1, . . . , φ̃t) = f (φ̃1)
T∏
t=2

f (φ̃t |φ̃t−1)

Desirable to allowing the prior to allow temporal independence and
strong dependance as special cases. One approach would be

f (φ̃1) ∼ N
(
0, σ2 [ρW ∗ + (1− ρ)I ]−1

)
f (φ̃t |φ̃t−1) ∼ N

(
αφ̃t−1, σ

2 [ρW ∗ + (1− ρ)I ]−1
)

where α ∈ [0, 1] captures the strength of temporal dependence.



Prior distributions and inference

We assume

ρ, α ∼ U[0, 1]

σ2 ∼ U[0, 1000]

α, β1, . . . , βp ∼ N(0, 100)

I Samples from the marginal posterior of α can be drawn using
Gibbs sampling

I Metropolis-Hastings is used for β, ρ, σ2,φ.

I For computational speed, the 624× 7 vector φ is updated
using C++



Results - is a temporal component needed for London
data?

To do this compare 3 scenarios under the proposed spatio-temporal
model:

α =


0 no temporal dependence
1 strong temporal dependence

∈ [0, 1] something in between

DIC Morans I p-value

α = 1 36125.6 0.010 0.1490
α = 0 36986.9 -0.043 0.0000
α = 0.85 36074.1 0.019 0.0056

Table : DIC and residual correlation under each type of model in space
and time



Composite indicator

It might be expected that the overall composition of the air is
what increases ill health of a population.

As a simple measure take the mean of each pollutant variable as a
composite measure at each site and time.
[Each pollutant standardised first so that they have mean 0 and
variance 1]

Compositeij =

∑m
k=1 Pollutantijk

k



Effects of individual pollutants and composite measure

RR 95% CI

PM10 1.022 (1.002,1.04)
PM2.5 1.032 (1.015,1.051)
CO 1.023 (1,1.039)
NO2 1.016 (0.998,1.033)
NOx 1.012 (0.99,1.028)
SO2 1.009 (0.993,1.024)
Composite 1.026 (1.004,1.046)

Table : Estimated effects of each pollutant and composite pollutant
variable with corresponding DIC



Summary of covariate and parameter estimates

Summary of covariates

RR 95% CI

JSA 1.206 (1.195,1.219)
Houseprice 0.945 (0.924,0.969)

Summary of model parameters

Median 2.5% 97.5%

σ2 0.0349 0.032 0.0379
ρ 0.9552 0.9242 0.9766
α 0.8456 0.8179 0.8721



Conclusions

I New model for air pollution and health that is effective in
capturing residual structure in space and time

I The model was applied to a large data set for London, an
analysis that is the first of its kind.

I For the London data, tangible improvement in fit and
estimation if space-time structure acknowledged

I The new results show that pollution is still a significant factor
in respiratory ill health, despite long-term improvements in
urban air quality.

I Model is fast to fit.



Further work

Further development of composite pollution measures.

I Interpretation presently unclear

I Relax assumption that each pollutant contributes equally

Spatio-temporal residual structure not likely to be really smooth.

I Much work in the spatial domain eg. Lu and Carlin (2007);
Lee and Mitchell, (2012) but little or none in the space-time
setting.

I Approaches involve treating the adjacency structure as not
fixed - computationally hard in space, more so in space-time.
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Thanks for your attention



Trace plots: Fixed effects
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Trace plots: φ

0 500 1500 2500

−
0.

1
0.

1
0.

2

iteration

ph
i 3

44
8

0 500 1500 2500

0.
1

0.
2

0.
3

0.
4

iteration

ph
i 1

39
7

0 500 1500 2500

0.
1

0.
2

0.
3

0.
4

iteration

ph
i 1

98
8

0 500 1500 2500

−
0.

1
0.

1
0.

3

iteration

ph
i 1

83
6



Trace plots: α, ρ, 1
σ2
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