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1. Background and motivation

Air pollution has long been known to adversely affect
public health, in both the developed and developing world.

A recent report by the UK government estimates that
particulate matter alone reduces life expectancy by 6
months, with a health cost of £19 billion per year.

Epidemiological studies into the effects of air pollution
have been conducted since the 1990s, focusing on both
short-term and long-term exposure.

The long-term effects can be estimated by cohort or
small-area ecological studies, and in this talk we focus on
the latter.
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Study design

Small area studies have an ecological design, because the
data relate to populations living in a set of n
non-overlapping areal units, rather than to individuals.

Examples include Jerrett et al. (2005), Elliott et al. (2007),
Lee et al. (2009) and Greven et al. (2011).

The health data are denoted by Y = (Y1, . . . ,Yn) and
E = (E1, . . . ,En), which are the observed and expected
numbers of disease cases in each areal unit.

The covariates, including air pollution concentrations, are
contained in an n× p matrix X = (x1, . . . , xn).
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Example - Greater Glasgow, Scotland

Respiratory hospitalisation risk - SIRk = Yk/Ek
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Statistical model

Yk ∼ Poisson(EkRk),

log(Rk) = xT
k β + φk,

φk|φ−k, τ
2,W ∼ N

(∑n
i=1 wkiφi∑n

i=1 wki
,

τ 2∑n
i=1 wki

)
,

where

Rk quantifies disease risk in area k.

φ = (φ1, . . . , φn) are random effects to model residual
spatial correlation, and are assigned an intrinsic
Conditional autoregressive (ICAR) prior where W = (wki)
is a binary n× n neighbourhood matrix.
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Limitations and motivation

The ICAR prior forces the random effects φ to be spatially
smooth, which leads to problems of collinearity with
covariates that are also smooth such as air pollution.

Existing work in this area include Reich et al. (2006) and
Hughes and Haran (2013).

Furthermore, the random effects are unlikely to be
spatially smooth anyway, because the disease data (e.g. the
SIR) are not spatially smooth so the residuals after
removing covariate effects are also unlikely to be.

We propose an extension to ICAR priors that can capture
localised spatial smoothness in the random effects surface,
i.e. subregion of spatial smoothness and step changes.
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2. Methodology

Our general approach follows Lu et al. (2007) and Lee and
Mitchell (2012, 2013), and modelsW = {wkj|k ∼ j, k > j}
as binary random variables, rather than wkj being fixed at 1.

This is because if wkj = wjk = 1 then (φk, φj) are correlated
and are smoothed over, where as if wkj = wjk = 0 they are
conditionally independent and are not smoothed over.

We follow the terminology of graphical models and refer
to wkj ∈ W as edges, and define any edge wkj that equals
zero as having been removed.
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Our methodological innovation is a Localised Conditional
AutoRegressive (LCAR) prior, which decomposes the joint
distribution for an extended set of random effects φ̃ and the set
of edgesW as

f (φ̃,W) = f (φ̃|W)f (W)

Standard ICAR models consist of the first of these distributions,
the latter is fixed.
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Prior distribution - f (φ̃|W)

The ICAR prior is inappropriate ifW is random, because
one could get

∑n
i=1 wki = 0 leading to an infinite variance.

Therefore we introduce φ̃ = (φ, φ∗), where φ∗ is a global
random effect that prevents any unit from having no edges.

The corresponding (n + 1)× (n + 1) neighbourhood
matrix is given by

W̃ =

[
W w∗
wT
∗ 0

]
,

where w∗ = (w1∗, . . . ,wn∗), wk∗ = I[
∑

i∼k(1− wki) > 0].
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We propose the multivarite prior φ̃ ∼ N(0, τ 2Q(W̃, ε)−1), where

Q(W̃, ε) = diag(W̃1)− W̃ + εI.

This is an ICAR prior for φ̃, except for the addition of εI, for
small ε, which ensures the matrix is invertible. The full
conditional distributions are given by:

φk|φ̃−k ∼ N
(∑n

i=1 wkiφi + wk∗φ∗∑n
i=1 wki + wk∗ + ε

,
τ 2∑n

i=1 wki + wk∗ + ε

)
.
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Prior distribution - f (W)

The dimensionality ofW is NW = 1TW1/2, and as each
edge is binary the sample space has size 2NW .

Previous studies have shown that modelling each element
inW separately results in weakly identifiable parameters.

Therefore we treatW as a single random quantity, and
propose the following prior for W̃;

W̃ ∼ Discrete Uniform(W̃(0), W̃(1), . . . , W̃(NW )).

Candidate W̃(j) has j edges retained in the model (i.e. j
elements inW equal 1), so (W̃(0), W̃(NW )) correspond to
independence and IAR priors respectively.
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Eliciting (W̃(0), W̃(1), . . . , W̃(NW))

We propose eliciting (W̃(0), W̃(1), . . . , W̃(NW )) from disease
data prior to the study period, because it should have a
similar spatial structure to the response.

Let ((Yp
1,E

p
1), . . . , (Yp

r ,Ep
r )) denote disease data for the r

years prior to the study.

The study data have expectation E[Y] = E exp(Xβ + φ),
which is equivalent to ln (E[Y]/E) = Xβ + φ. Thus we
make the approximation:

φp
j = ln

[Yp
j

Ep
j

]
≈ ln

[
Y
E

]
∼approx N(Xβ, τ 2Q(W̃, ε)−1

1:n).
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Elicitation algorithm

1 Start at W̃(NW ) which has all edges retained in the model
(wkj = 1) and corresponds to the IAR prior for strong
spatial smoothing.

2 For j = NW , . . . , 1 move from W̃(j) to W̃(j−1) by removing a
single edge fromW (i.e. by setting an element inW equal
to zero). This corresponds to localised spatial smoothing

3 When j = 0 W̃(0) contains no edges (wkj = 0), and
corresponds to non-spatial smoothing.
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Moving from W̃(j) to W̃(j−1)

At step j compute the joint approximate Gaussian
log-likelihood for (φp

1, . . . ,φ
p
r ) given by

ln[f (φp
1, . . . ,φ

p
r |W̃(∗))] =

r∑
j=1

ln[N(φp
j |Xβ̂, τ̂

2Q(W̃∗, ε)−1
1:n)],

∝ r
2

ln(|Q(W̃∗, ε)1:n|)−
nr
2

ln(τ̂ 2)

− 1
2τ̂ 2

r∑
j=1

(φp
j − Xβ̂)TQ(W̃∗, ε)1:n(φ

p
j − Xβ̂),

for all matrices W̃(∗) that differ from W̃(j) by having one
additional edge removed. Then set W̃(j−1) equal to the value of
W̃(∗) that maximises the log-likelihood.
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Overall model

The overall model is given by

Yk|Ek,Rk ∼ Poisson(EkRk) for k = 1, . . . , n,
ln(Rk) = xT

kβ + φk,

φ̃ ∼ N(0, τ 2Q(W̃, ε)−1),

W̃ ∼ Discrete Uniform(W̃(0), W̃(1), . . . , W̃(NW )),

βj ∼ N(0, 1000) for j = 1, . . . , p,
τ 2 ∼ Uniform(0, 1000).
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3. Simulation study

Five hundred data sets were generated for Greater Glasgow
under a number of different scenarios.

Each data set consisted of study data and three years of
prior data, and the LCAR model was compared with the
commonly used ICAR and BYM models.

For each data set the log-risk surface was generated as a
linear combination of a spatially smooth covariate
(representing air pollution) and localised residual spatial
structure (to be modelled by the random effects).

The localised residual spatial structure was generated from
a multivariate Gaussian distribution with a piecewise
constant mean, the template for which is shown on the next
slide.
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Generating localised spatial structure

The piecewise constant mean below is multiplied by M.
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RMSE values for β for different (M,E)
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Here (a)-ICAR, (b)-BYM and (c)-LCAR. The dot is the root
mean square error (RMSE) of the regression parameter β and
the line is a bootstrapped 95% confidence interval.
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4. Case study

The methodology was motivated by a study estimating the
effects of air pollution on hospitalisation due to respiratory
disease in Greater Glasgow, Scotland in 2010.

The prior distribution for the spatial structure was elicited
using three years of respiratory hospitalisation data
between 2007 and 2009.

Modelled concentrations of nitrogen dioxide (NO2), and
particulate matter (PM2.5 and PM10) were available for
2009, along with a measure of income deprivation, a major
confounder in spatial ecological studies.

The pollutants were included in separate models to avoid
issues of collinearity, and in all cases inference was based
on 150,000 samples obtained from 3 Markov chains.
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Results 1 - Parameter estimates

Model
ICAR BYM LCAR

DIC (p.d) 2113.3 (164.1) 2096.5 (164.6) 2090.8 (162.1)
NO2 1.017 (0.975, 1.061) 1.032 (0.994, 1.067) 1.034 (1.002, 1.068)
PM2.5 1.033 (0.990, 1.078) 1.042 (1.009, 1.078) 1.043 (1.010, 1.074)
PM10 1.037 (0.997, 1.081) 1.043 (1.007, 1.079) 1.048 (1.017, 1.080)

The pollution effects are relative risks for a one standard
deviation increase in the yearly average concentrations, which
are: NO2 - 5.0µgm−3, PM2.5 - 1.1µgm−3, PM10 - 1.5µgm−3.
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5. Conclusions

1 The LCAR prior proposed here has the flexibility to
capture both sub-regions of spatial correlation and step
changes in the random effects surface, which reduces the
effects of collinearity with spatially smooth covariates
compared with commonly used CAR models.

2 The improvements in the estimation of the fixed effects can
be substantial, as the percentage reductions in RMSE
between the BYM and LCAR models ranged between
4.5% and 45.8% in the simulation study presented here.

3 Future work will extend this model into the
spatio-temporal domain, as well as applying it to the
related fields of disease mapping and Wombling.
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