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1 Introduction

Many problems in Economics are of the following type: an objective functional measuring economic

performance needs to be optimized subject to a constraint accounting for the scarcity of resources.

The classical Lagrange multiplier theorem, which is taught to virtually all undergraduate economics

students, provides the right tool to solve such problems mechanically, at least if the problem is static

and does not involve random shocks. A correct formulation of the Lagrange multiplier theorem

however is necessary, to apply it correctly and prevent making conclusions that the theorem does

not allow per se.1 Lang (1973), which for decades has served as one of the main undergraduate

texts in multi-dimensional calculus states the classical Lagrange multiplier theorem as follows:

Theorem 1. Let U ⊂ Rn be an open set and g : U → R be a continuously differentiable function

and let S be the set of points x ∈ U , s.t. g(x) = 0 but

∇g(x) ̸= 0. (1)

Further, let f : U → R be continuously differentiable and assume that x∗ is a maximum for f on

S, i.e. f(x∗) ≥ f(x) for all x ∈ S. Then there exists a real number λ such that2

∇f(x∗) = λ · ∇g(x∗). (2)

The theorem provides a necessary but in general not a sufficient condition for an extremum

under a single constraint. Under appropriate convexity conditions, a sufficient criterion can be

derived. For the case of multiple constraints, the function g can be chosen vector-valued, i.e.

g : U → Rm, in this case, the Lagrange multiplier will be a vector in Rm and equation (2) will

become

Df(x∗) = λ⊤ ·Dg(x∗), (3)

where Df(x∗) and Dg(x∗) denote the corresponding Jacobian matrices, i.e. Df(x∗) = ∇f(x∗)⊤

and Dg(x∗) =
(

∂gi
∂xj

)
∈ Rm×n. Note that the product on the right-hand side is a product between

an R1×m vector and an Rm×n times matrix resulting in a R1×n vector. The fact that the right-

hand side of the equation involves the transpose of the vector λ indicates that λ should actually be

considered to be in the dual space of Rm, i.e. as a linear map λ : Rm → R, with Dg(x∗) : Rn → Rm

and Df(x∗) : Rn → R linear maps of the corresponding spaces. Note that differentials are defined

as linear maps, rather than as numbers, euclidean vectors or matrices, and the product on the

right-hand side of equation (3) corresponds to the composition of two linear maps.

Finite dimensional vector-valued constraints can be used to implement dynamic constraints in

1Unfortunately treatment of the Lagrange multiplier formalism in many undergraduate maths texts for economists
is light touch, focusing on intuition and examples, and often conveys the perception that it is virtually always
applicable as long as the Lagrange function can be written down.

2Here ∇f(x∗) denotes the gradient of the function f(·) at the point x∗ i.e. ∇f(x∗) =
(

∂f
∂x1

(x∗), ..., ∂f
∂xn

(x∗)
)⊤

and similar for ∇g(x∗).
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discrete time with a finite horizon as well as finitely distributed random shocks. This requires more

sophistication but is standard in dynamic Macroeconomic modeling. For continuous time or the in-

clusion of random shocks with a continuous distribution, however, the Lagrange multiplier theorem

does not apply a priori. In this case, the spaces Rn and Rm above need to be replaced by infinite di-

mensional spaces and it is not a priori clear how to take differentials on these spaces. Clarke (1976)

provided a Lagrange-type theorem that holds on Banach spaces and our work can be seen as a con-

tinuation of this work, systematically adapted to cover continuous time stochastic optimal control

problems. In fact, if the relevant spaces admit a Fréchet structure, then using Fréchet derivatives in

place of the classical finite-dimensional derivatives permits a Lagrange multiplier theorem, which

as we show can be used to derive necessary conditions for dynamic optimization problems with

random shocks, first in discrete time and then in continuous time.3 We show that in the limiting

process, the Lagrange multiplier approach is equivalent to the stochastic maximum principle, which

has been around in various forms since Bismut (1975), see also Malliaris (1982). In the modern

mathematical treatment of this theorem, see e.g. Pham (2009), the stochastic maximum principle

is now presented in the context of backward stochastic differential equations, through which it has

become much more accessible. The connection between the stochastic maximum principle and the

Lagrange multiplier approach however does not seem to have been made, even in the mathematical

literature. We acknowledge that our proof of the validity of the Lagrange method for continuous-

time stochastic optimal control problem is tied to the validity of the stochastic maximum principle,

we do not provide an independent proof. As such the stochastic maximum principle takes a cen-

tral role in our investigation. However we find it more intuitive to start our investigation from

the classical finite-dimensional Lagrange multiplier setup, and through appropriate modifications,

generalizations, and specifically the continuous-time limit within a rigorous setup of functional and

stochastic analysis, to eventually reach the stochastic maximum principle as an anchor point, rather

than starting from the stochastic maximum principle and deriving the continuous time Lagrange

multiplier equations from it. Nevertheless, both approaches are valid and any preference is a matter

of taste.

In the economic literature, Chow (1992), Chow (1993), Kwan and Chow (1997), as well as Reiter

(1996), have promoted the Lagrange multiplier approach to solve dynamic optimization problems in

continuous time with random shocks generated through a Brownian motion, linking their approach

to the classical Hamilton-Jacobi-Bellman approach to solve these problems. There are some gaps

and limitations to these studies, which we aim to address and overcome in our current paper. Most

importantly, none of these studies presents a formal Lagrange-type theorem, providing necessary

conditions, derived in full mathematical rigor. Instead, for the discrete-time case, a Lagrange

function is introduced and it is claimed that by differentiating the Lagrange function first order

conditions are obtained that characterize the solution. It is ignored that their Lagrange function is

actually defined on infinite dimensional spaces of stochastic processes and that taking derivatives

3For some background on standard terms of Functional Analysis, including a definition of Fréchet differentiability,
we refer the reader to Treves (1967) and Ewald (2004).
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on these spaces is a highly nontrivial matter. Furthermore, they rely on an argument, compare

Chow (1993, pages 627-628), to separate individual terms within a sum which is part of an expected

value, which from a mathematical point of view is not valid, even if it leads to the correct first

order conditions. Additionally, their approach in discrete time relies on the fact that in their case

the random shock is unaffected by either the control or state variable, a strong assumption that we

overcome in our paper. For the continuous time case, neither Chow (1992), Chow (1993), Kwan and

Chow (1997) or Reiter (1996) are connecting their approach to a formal Lagrange-type approach.

Instead, their starting point is the Hamilton-Jacobi-Bellman equation, which after differentiating

and defining the function λ(x) as the first-order derivative of the value function of the underlying

problem leads to an equation for λ(x), to which they then refer as the Lagrange multiplier, see

for example Chow (1993, page 624, equation (10)). But it remains unclear as to why their λ(x)

is in fact a Lagrange multiplier of the type considered in Theorem 1. The fact that λ(x) denotes

the marginal value of the constraint to the value function, i.e. λ(x) := ∂V
∂x (x) and that the same

holds for the classical Lagrange multiplier does not provide sufficient argument. Indeed, in their

approach, it is by definition only, while in the Lagrange multiplier approach, this is a non-trivial

conclusion of the envelope theorem.

In this paper, we overcome many of the shortcomings and gaps of the Chow (1992) approach

as indicated above. We show that a sufficiently general Lagrange multiplier theorem on Fréchet

spaces can indeed be used to provide a necessary condition for a solution to a discrete-time opti-

mization problem affected by random shocks. We allow random shocks to be affected by the state

variable and control. Furthermore, by taking limits for the discretization step to approach zero,

we obtain first-order conditions for the corresponding continuous time version of the problem. We

then demonstrate that these conditions are in fact the very same conditions that are stated in the

stochastic maximum principle, and as such have been around in various guises since Bismut (1975).

The connections drawn between the stochastic maximum principle and the classical Lagrange ap-

proach are new and fundamental however and to the best of our knowledge have not been drawn

within either the mathematical or economics literature.

One of the key contributions by Chow (1992), Chow (1993), Kwan and Chow (1997) as well as

Reiter (1996) also lies in the potential for deriving numerical schemes that help solve dynamic opti-

mization problems under uncertainty numerically and in approximation close to the corresponding

steady state of the corresponding deterministic system. As Reiter (1996) however shows, there are

nevertheless issues with the accuracy of the approximation, which is particularly prominent if a

large shock shifts the state variables far away from the deterministic steady state. Our approach

shares that strong potential for numerical applications. However, instead of expanding the La-

grange multiplier function λ up to a certain order in the state variable4, we simulate the stochastic

dynamics backward in time and regress the Lagrange multiplier, which by nature is a stochastic

variable, backward onto powers of the state variable up to a certain degree. The methodology

developed in our article naturally leads to this new method, which conceptually is related to the

4Chow (1993) and Reiter (1996) use a linear approximation
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Longstaff and Schwartz least square Monte Carlo method as well as more modern methods for solv-

ing backward stochastic differential equations.5 Instead of using simple powers in the regression

step, we could also use more sophisticated polynomial functions or series of elementary functions,

e.g. Hermite polynomials. However, in this paper, we simply want to present the potential of

this approach, without aiming at optimizing it. The latter is left for future work. Nevertheless,

our numerical examples show that even in a basic setup with linear regression on one factor only

our method delivers excellent results for the benchmark optimal growth model presented in Re-

iter (1996). More generally, our computational results are important within the context where

value function iteration methods are often presented as superior to the Lagrangian formulation on

account of relative computational ease, we show that this is not necessarily correct.

While some parts of our paper point to gaps and limitations of Chow’s Lagrangian approach,

overall our results should be considered as an endorsement - even a celebration - of Chow’s method,

which as a whole is presented in Chow’s excellent book Chow (1997), where it is amply demonstrated

that it has many wide-ranging applications.

Beyond Chow, there are of course many other important contributions to the topic of stochastic

optimal control in continuous time, many of these use duality, for example Ma et al (2019), and

it would be very interesting to connect the Lagrange formalism explored in our paper to these.

Further, Wörner et. al. (2015) propose an approximate relative value iteration algorithm based

on piecewise-linear convex relative value function approximations, which would be interesting to

investigate from the perspective of the Lagrange multiplier theorem and our proposed numerical

scheme in section 4, which is partly Monte Carlo based. We leave both of these avenues for future

research. In general terms, the importance of stochastic optimal control theory within the context

of Operational Research has been emphasized in Neck (1984) and we see our contribution also in

adding to this classical literature. Mathematical programming, Lagrange multipliers, and various

adaptations to dynamic optimization have been discussed within the operations research literature

in Hampshire and Williams (2014), but they do not cover continuous time and do not connect their

approach to the stochastic maximum principle.

The remainder of the paper is organized as follows. In the following section 2, we present

our main theoretical contributions, including the various Lagrange theorems as well as drawing the

connection to the stochastic maximum principle. In section 3 we present two explicit examples that

demonstrate the usefulness of our approach in theory. Further, in section 4 we illustrate how our

approach can be used to derive new numerical schemes using backward Monte Carlo simulation and

regression-based techniques in order to solve stochastic optimal control problems and benchmark

its performance. Our main conclusions are summarized in section 5.

5Reiter (1999) has also explored linear regression-based methods for stochastic optimal control problems and Gobet
et. al. (2005) present a regression-based Monte Carlo method to solve backward stochastic differential equations
(without optimal control). Our approach is very different from Reiter but inspired by Gobet et al. (2005).
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2 Lagrange Formalism for Stochastic Optimal Control

2.1 The Stochastic Maximum Principle

We consider a standard continuous time stochastic optimal control problem of the type

max
(αt)∈A

E
(∫ T

0
f(t,Xt, αt)dt+ g(XT )

)
(4)

subject to the dynamic constraint

dXt = b(t,Xt, αt)dt+ σ(t,Xt, αt)dWt. (5)

For simplicity, we assume that the state variable (Xt) and Brownian motion (Wt) are one-

dimensional, but all that follows can be adapted to the multi-dimensional case using vector-matrix

notation. Measurability is defined with respect to the Brownian filtration (Ft) and the set of ad-

missible controls A is the set of progressively measurable stochastic processes taking values in the

set A. We assume that the functions f, b, σ : [0, T ] × R × A → R and g : R → R are continuously

differentiable with bounded derivatives.6

Perhaps the most sophisticated method developed to solve problems of this type is the stochastic

maximum principle. We follow Pham (2009) in his exposition. For this we define the Hamiltonian7

H(t, x, a, y, z) = b(t, x, a)y + σ(t, x, a)z + f(t, x, a). (6)

We denote derivatives with lower indices, i.e. Hx, fx, fa, gx, bx, ba, σx, σa, and higher derivatives

with multiple lower indices. The following Theorem characterizes the solution of problem (4)-(5)

as maximizing the Hamiltonian along the solution of a backward stochastic differential equation

(BSDE).8 The form in which the Theorem is presented is due to Pham (2009) (Theorem 6.4.6),

but (at least for special cases) the Theorem can be traced back to Bismut (1975).

Theorem 2. Assume that (α∗
t ) ∈ A and the pair ((Y ∗

t ), (Z
∗
t )) is a solution to the BSDE

−dYt = Hx(t,X
∗
t , α

∗
t , Yt, Zt)dt− ZtdWt, (7)

YT = gx(X
∗
T ), (8)

such that

H(t,X∗
t , α

∗
t , Y

∗
t , Z

∗
t ) = max

a∈A
H(t,X∗

t , a, Y
∗
t , Z

∗
t ) (9)

6These restrictions can be relaxed but this requires more sophisticated functional analysis and would require
case-by-case consideration.

7This is equivalent to Pham (2009) equation (6.24) noticing that Pham uses a multi-dimensional setup, where the
first component of the multi-dimensional process (Xt) can be chosen as time t. We use a one-dimensional notation
for (Xt) but include the variable t explicitly.

8Including the dynamics (5) in the formal setup, it becomes a forward-backward stochastic differential equation
(FBSDE).
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for 0 ≤ t ≤ T almost surely, where X∗
t is the solution of (5) under the control (α∗

t ). If the function

(x, a) 7→ H(t, x, a, Y ∗
t , Z

∗
t ) (10)

is concave for all t ∈ [0, T ] a.s., then (α∗
t ) is the solution of the stochastic optimal control problem

(4)-(5).

Under the assumption of an interior maximum in (9), we have that

ba(t,X
∗
t , α

∗
t )Y

∗
t + σa(t,X

∗
t , α

∗
t )Z

∗
t + fa(t,X

∗
t , α

∗
t ) = 0. (11)

Further we have that

−dY ∗
t = [bx(t,X

∗
t , α

∗
t )Y

∗
t + σx(t,X

∗
t , α

∗
t )Z

∗
t + fx(t,X

∗
t , α

∗
t )] dt− Z∗

t dWt, (12)

with Y ∗
T = gx(X

∗
T ). Equations (11) and (12) will be important to link the process (Y ∗

t ) to the

continuous time Lagrangian. Before that, further identification of (Y ∗
t ) and (Z∗

t ) is useful. In fact,

introducing the value function of the problem (4)-(5) as

v(t, x) = E
(∫ T

t
f(s,X∗

s , α
∗
s)ds+ g(X∗

T )

∣∣∣∣X∗
t = x

)
, (13)

it can be shown that if v is sufficiently smooth, i.e. v ∈ C1,3, then

Y ∗
t = vx(t,X

∗
t ) (14)

Z∗
t = vxx(t,X

∗
t )σ(t,X

∗
t , α

∗
t ), (15)

see Pham (2009) equation (6.35).

2.2 Infinite Dimensional Lagrange Theorem and Discretization

Let us now present the Lagrangian approach to solving problem (4)-(5). To do this, we first

discretize problem (4)-(5). We will later consider the continuous time limit. We assume that

0 = t0 < t1 < ... < tn = T is an equidistant partition and define ∆ = ti+1 − ti. We denote with

∆Wi = Wti+1 −Wti (16)

the increment of the Brownian motion (Wt) over the corresponding interval. We further let Fi = Fti

andM i = L2(Ω,Fi) be the space of square integrable Fi measurable random variables on Ω. Further

we define

Mn = M0 ×M1 × ...×Mn (17)

M−
n = M0 ×M1 × ...×Mn−1. (18)
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We then consider the following constrained optimization problem on Mn ×M−
n :

max
((Xi),(αi))

E

(
n−1∑
i=0

f(i∆, Xi, αi)∆ + g(Xn)

)
(19)

s.t. X0 = x and for i = 0, ..., n− 1 (20)

Xi+1 −Xi = b(i∆, Xi, αi)∆ + σ(i∆, Xi, αi)∆Wi. (21)

We will apply the Lagrange theorem for real Banach spaces, Proposition 1 in Zeidler (1995), page

270. Using the same notation, we define the two functions F and G as follows:

F : Mn ×M−
n → R (22)

((Xi), (αi)) 7→ E

(
n−1∑
i=0

f(i∆, Xi, αi)∆ + g(Xn)

)
(23)

and

G : Mn ×M−
n → Mn (24)

((Xi), (αi)) 7→


x−X0

X0 + b(0∆, X0, α0)∆ + σ(0∆, X0, α0)∆W0 −X1

...

Xn−1 + b((n− 1)∆, Xn−1, αn−1)∆ + σ((n− 1)∆, Xn−1, αn−1)∆Wn−1 −Xn

 .

The constrained optimization problem (19)-(21) can then be expressed as

maxF ((Xi), (αi))) (25)

s.t. G((Xi), (αi)) = 0. (26)

Both F and G are Fréchet differentiable and their respective derivatives at a chosen point

((X∗
i ), (α

∗
i )) ∈ Mn ×M−

n are given as follows:9

DF ((X∗
i ), (α

∗
i )) : Mn ×M−

n → R (27)

((ξi), (βi)) 7→ E

(
n−1∑
i=0

fx(i∆, X∗
i , α

∗
i )∆ · ξi + gx(X

∗
n) · ξn

+

n−1∑
i=0

fa(i∆, X∗
i , α

∗
i )∆ · βi

)
9For this conclusion, note that for any continuously differentiable function ϵ : R → R with bounded derivatives the

induced function X 7→ ϵ ◦X which maps M i onto itself by composition has Fréchet differential Dϵ(X)Y = ϵ′(X) · Y ,
where the latter product is the point-wise product of a bounded function and a function in M i and ϵ′(x) is the
one-dimensional derivative of ϵ(x) in the standard calculus way. This can be verified by applying the definition of
the Fréchet derivative and the derivative from standard calculus.
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and

DG((X∗
i ), (α

∗
i )) : Mn ×M−

n → Mn (28)

((ξi), (βi)) 7→
−1 0 · · · 0 0 · · · · · · 0

1 + bx∆ + σx∆W −1 0

.

.

. bu∆ + σu∆W 0 · · · 0

0
.
.
.

.
.
.

.

.

. 0
.
.
.

.

.

.

0 0
.
.
.

.
.
. 0

.

.

.
.
.
. 0

0 · · · 1 + bx∆ + σx∆W −1 0 · · · 0 bu∆ + σu∆W




ξ0

.

.

.

ξn
β0

.

.

.

βn−1


In the matrix above the expressions 1+bx∆+σx∆W and bu∆+σu∆W are evaluated at (i∆, X∗

i , α
∗
i )

according to their position in the matrix. Matrices and vectors are multiplied in linear algebra

fashion and products within L2 spaces are point-wise. As the matrix representing DG has full

rank, Proposition 1 on page 270 in Zeidler (1995) implies that if ((X∗
i ), (α

∗
i )) is a solution to

(25)-(26), then there exists λ ∈ M∗
n such that

DF + λ ◦DG = 0. (29)

Here M∗
n denotes the dual space of Mn, however since only L2 spaces are involved, we have M∗

n
∼=

Mn, via the natural isomorphism which identifies (λi) ∈ Mn with the functional

(ζi) 7→ E

(
n∑

i=0

λi · ζi

)
(30)

for all (ζi) ∈ Mn. Equation (29) is to be understood as the functional on the left hand side being

identical zero on Mn ×M−
n , where λ ◦DG indicates the composition of DG and λ = (λi). Using

this identification, (29) is equivalent to

E

(
n−1∑
i=0

fx(i∆, X∗
i , α

∗
i )∆ · ξi + gx(X

∗
n) · ξn +

n−1∑
i=0

fa(i∆, X∗
i , α

∗
i )∆ · βi

)
(31)

+E (λ0(−ξ0) + λ1 [ξ0(1 + bx∆+ σx∆W1)− ξ1 + β0(ba∆+ σa∆W1)]

...
...

λn [ξn−1(1 + bx∆+ σx∆Wn−1)− ξn + βn−1(ba∆+ σa∆Wn−1)]) = 0

9



for all ((ξi), (βi)) ∈ Mn ×M−
n . Collecting terms shows that (31) is equivalent to

E

(
n−1∑
i=0

fx(i∆, X∗
i , α

∗
i )∆ · ξi + gx(X

∗
n) · ξn +

n−1∑
i=0

fa(i∆, X∗
i , α

∗
i )∆ · βi

)
(32)

+E

(
n−1∑
i=0

(λi+1 − λi)ξi + λi+1(bx∆+ σx∆Wi)ξi − λnξn

n−1∑
i=0

λi+1βi(ba∆+ σa∆Wi)

)
= 0.

The terms λi+1(bx∆+ σx∆Wi) in the sum above can be replaced by (λi+1 − λi)(bx∆+ σx∆Wi) +

λi(bx∆+ σx∆Wi) and similar for λi+1(ba∆+ σa∆Wi). This is necessary to identify the continuous

time limits in the context of stochastic calculus.10 Using this trick, we obtain

E

(
n−1∑
i=0

fx(i∆, X∗
i , α

∗
i )∆ · ξi + gx(X

∗
n) · ξn +

n−1∑
i=0

fa(i∆, X∗
i , α

∗
i )∆ · βi

)
(33)

+E

(
n−1∑
i=0

ξi [(λi+1 − λi) + (λi+1 − λi)(bx∆+ σx∆Wi) + λi(bx∆+ σx∆Wi)]

−λnξn +

n−1∑
i=0

βi [(λi+1 − λi)(ba∆+ σa∆Wi) + λi(ba∆+ σu∆Wi)]

)
= 0

for all ((ξi), (βi)) ∈ Mn ×M−
n . As ξn ∈ Mn can be chosen independently, we immediately obtain

that

λn = gx(X
∗
n). (34)

10The reason for this is that the stochastic Itô integral (in the limit) is defined through evaluating the integrand on
the left-hand side, even though other types of stochastic integrals exist, but are not common in economic modeling.
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2.3 From Discrete Time to Continuous Time

We now let ∆ go to zero, and assume that the corresponding sequence of (λi)’s converges to a

progressively measurable Itô process11 in the continuous time limit.12 Then we obtain that

E
(∫ T

0
ξtfx(t,X

∗
t , α

∗
t )dt+

∫ T

0
βtfa(t,X

∗
t , α

∗
t )dt

)
(35)

+E
(∫ T

0
ξt [dλt + dλt(bxdt+ σxdWt) + λt(bxdt+ σxdWt)]

+

∫ T

0
βt [dλt(badt+ σadWt) + λt(badt+ σadWt)]

)
= 0,

as well as

λT = gx(X
∗
T ), (36)

with bx, ba, σx, σa evaluated at (t,X∗
t , α

∗
t ). Itô calculus implies that differential products of the type

dλtdt are all zero13 and integrals with regards to dW have zero expectation. Hence (35) reduces to

E
(∫ T

0
ξtfx(t,X

∗
t , α

∗
t )dt+

∫ T

0
βtfa(t,X

∗
t , α

∗
t )dt

)
+ (37)

E
(∫ T

0
ξt [dλt + σxdλtdWt) + λtbxdt] +

∫ T

0
βt [σadλtdWt + λtbadt]

)
= 0,

for all (ξt), (βt) ∈ L2(Ω× [0, T ]). As (ξt) and (βt) can be chosen independently from each other, we

have that (37) is equivalent to the following two equalities:

E
(∫ T

0
ξt [fx(t,X

∗
t , α

∗
t )dt+ dλt + σx(t,X

∗
t , α

∗
t )dλtdWt + λtbx(t,X

∗
t , α

∗
t )dt]

)
= 0 (38)

E
(∫ T

0
βt [fa(t,X

∗
t , α

∗
t )dt+ σa(t,X

∗
t , α

∗
t )dλtdW + λtba(t,X

∗
t , α

∗
t )dt]

)
= 0 (39)

We refer to the solution (λt) of (38) and (39) as the continuous time Lagrange multiplier. As

(ξt) and (βt) can be chosen as arbitrary (Ft) adapted L2-processes, the latter two equations can be

formally written as14

11We refer to Pham (2009) Definition 1.2.11 for the definition of an Itô process and note that the class of Itô
processes is contained in the class of semi-martingales and that therefore the relevant stochastic integrals in (35) exist
and in fact correspond to the continuous time limit of (33). Quadratic co-variations such as dλtdWt are well defined
under this assumption too and represent suitable integrators.

12Some literature exists about approximation of continuous time stochastic control problems by discretization and
convergence of the discretized solution. We do not delve into this literature. We will later show that the continuous
time characterization of the Lagrange problem has a solution in form of the solution to the BSDE that is attached
to the stochastic maximum principle. Hence this assumption is more for motivation than it is necessary to establish
the general principle.

13Intuitively, within the Itô calculus and in approximation dW ≃
√
dt ≃

√
∆, this result follows from

lim∆→0

∑T/∆
i=1 ∆2 = lim∆→0

∑T/∆
i=1 ∆3/2 = 0.

14Note that possible choices for the processes (ξs), (βs) include for example ξs := 1s≥tX
t and βs := 1s≥tY

t for
arbitrary Ft measurable random variables Xt and Y t.

11



−Et(dλt)

dt
= fx(t,X

∗
t , α

∗
t ) + σx(t,X

∗
t , α

∗
t )
dλtdWt

dt
+ λtbx(t,X

∗
t , α

∗
t ) (40)

0 = fa(t,X
∗
t , α

∗
t ) + σa(t,X

∗
t , α

∗
t )
dλtdW

dt
+ λtba(t,X

∗
t , α

∗
t ), (41)

where Et(·) = E(·|Ft). Equations (40) and (41) are the key equations of our Lagrangian approach

in continuous time. They can be used to identify the optimal controls and the Lagrangian λ as

we show later in our examples. In addition, equations (40) and (41) open a gateway for deriving

numerical schemes as we will demonstrate in section 4. To formally link these equations to a

Lagrangian type theorem we revert back to the discretized version of the problem and formally

introduce the Lagrange function

L = F + λ ◦G (42)

for the discretized problem. This translates into

L((Xi), (αi), (λi)) = E

(
n−1∑
i=0

f(i∆, Xi, αi)∆ + g(Xn)− λ0(X0 − x)

−
n−1∑
i=1

λi [(Xi −Xi−1)− b((i− 1), Xi−1, αi−1)∆− σ((i− 1), Xi−1, αi−1)∆Wi]

)
.

Again, the products of λi with (Xi−Xi−1) and ∆Wi are problematic from a stochastic calculus

point of view, which is why we rewrite λi = λi−1 + (λi − λi−1) as before. Then moving to the

continuous time limit for ∆ → 0 we obtain for the continuous time Lagrange function15

L((Xt), (αt), (λt)) = E
(∫ T

0
f(t,Xt, αt)dt+ g(XT ) (44)

−
∫ T

0
λt(dXt − b(t,Xt, αt)dt− σ(t,Xt, αt)dWt)

−
∫ T

0
dλtdXt +

∫ T

0
σ(t,Xt, αt)dλtdWt

)
.

Finally, applying the Itô partial integration rule, the latter is equivalent to

15We may alternatively define the Lagrange function L̃ via

L̃ = E
(∫ T

0

f(t,Xt, αt)dt+ g(XT ) (43)

−
∫ T

0

λt(dXt − b(t,Xt, αt)dt− σ(t,Xt, αt)dWt),

which at first glance seems more natural and more closely tied to the standard Lagrange formalism. The previous
analysis shows however, that by strictly following the standard Lagrange formalism and making the transition to
continuous time stochastic dynamics, in the limit we obtain L and not L̃.

12



L = E
(∫ T

0
f(t,Xt, αt)dt+ g(XT ) (45)

+

∫ T

0
[Xt − x−

∫ t

0
b(s,Xs, αs)ds− σ(s,Xs, αs)dWs]dλt,

which resembles a more classical textbook Lagrangian function, where the Lagrangian is now rep-

resented by the differential dλt and the constraint is equation (5) with initial condition X0 = x.

We now come to our main theorem:

Theorem 3. 1. Let (α∗
t ) be an admissible control and (X∗

t ) the corresponding state process.

Assume there exists a progressively measurable process (λ∗
t ) such that

∂L
∂X

((X∗
t ), (α

∗
t ), (λ

∗
t )) = 0 (46)

∂L
∂α

((X∗
t ), (α

∗
t ), (λ

∗
t )) = 0. (47)

Further assume that the function

(x, a) 7→ b(t, x, a) · λ∗
t + σ(t, x, a) · dλ

∗
tdWt

dt
+ f(t, x, a) (48)

is concave for all t ∈ [0, T ] a.s.. Then (α∗
t ) is the optimal control.16

2. On the other hand, if (α∗
t ) is a solution to the problem (4)-(5) and (48) holds, then there

exists a progressively measurable Itô process (λ∗
t ) such that (46)-(47) holds.

Proof. We have established above, that (46) and (47) are equivalent to (36), (38) and (39). Choosing

processes (ξut ) in (38) where ξus = 1 for all s > u and otherwise unrestricted (but progressively

measurable) shows that the term in the square brackets in (38) defines a martingale. The martingale

representation theorem then establishes the existence of a process (Z∗
t ), such that

dλ∗
t + (bx(t,X

∗
t , α

∗
t ) + σx(t,X

∗
t , α

∗
t )dλ

∗
tdWt + fx(t,X

∗
t , α

∗
t )) dt = Z∗

t dWt. (49)

Using that the term in brackets on the left hand side is of bounded variation, we then obtain

dλ∗
tdWt = Z∗

t dt. (50)

Substituting the latter in (49) and reordering shows that ((λ∗
t ), (Z

∗
t )) is a solution of the BSDE

(7)-(8). Then (48) implies (10) and (39) implies (9). The stochastic maximum principle then

establishes that (α∗
t ) is the optimal control.

16Carrying out the differentiation one needs to use that ∂dX
∂X

is the functional which gives
(∫ T

0
λt

(
∂dX
∂X

)
t

)
(ξt) =∫ T

0
ξtdλt. Equations (46)-(47) have to be considered in the functional sense. However, equation (48) refers to concavity

of deterministic functions depending on (x, a) ∈ R2 for fixed states ω ∈ Ω and fixed time t, analog to (10).

13



On the other hand, let (α∗
t ) be a solution to the problem (4)-(5). We then define λ∗

t = vx(t,X
∗
t )

and Z∗
t = vxx(t,X

∗
t )σ(t,X

∗
t , α

∗
t ). Pham (2009) (Theorem 6.4.7, page 151) shows that the pair

((λ∗
t ), (Z

∗
t )) is a solution of the BSDE (7)− (8). Then using equation (12) (which is equivalent to

(7)), we find that

dλ∗
tdWt = vxx(t,X

∗
t )σ(t,X

∗
t , α

∗
t )dt. (51)

We substitute this for dλtdW and also substitute (12) for dλt on the left hand side of (38). Then,

noticing that the expectation of integrals with respect to dW are zero shows that (38) indeed holds.

Similarly, substitution of (51) into (39) and using (48) shows that (39) holds, note equation (6.34)

in Pham (2009).

We conclude this section with a short note on duality. The problem presented in Theorem 1 has

a dual problem and a link between the two solutions of the primal and dual problem is presented

through an appropriate duality theorem. Such a duality theorem for stochastic optimal control

problems can be found in Chapter 6 of Karatzas and Shreve (1998) Proposition 5.1 and Theorem

5.3. We expect that our stochastic Lagrange formalism connects duality in the finite-dimensional

context of the introduction with the framework presented in Karatzas and Shreve (1998). However

to formally carry out this work would be material for an independent research artcile and we

postpone this to future work.

3 Examples

3.1 Stochastic Linear Regulator

We start this section by considering the stochastic linear regulator. This example is relevant to

a number of applications in economics and finance and takes center stage in many textbooks on

dynamic optimization in economics including the classic textbook Sargent (1987). To contrast

the Lagrangian approach with the mainstream Hamilton-Jacobi-Bellman (HJB) approach, we start

with the latter. The HJB approach takes its starting point from the value function v(t, x) defined

in (13) and the corresponding HJB equation

vt(t, x) + max
(αt)∈A

{
f(t, x, α) + vx(t, x)b(t, x, α) +

1

2
vxx(t, x)σ(t, x, α)

2

}
= 0, (52)

with terminal condition v(T, x) = g(x). For the particular problem of the stochastic linear regulator

we have

v(t, x) = min
(αt)∈A

Ex

(∫ T

0
(X2

t + θα2
t )dt+ ΓX2

T )

)
, (53)

dXt = αtdt+ σdWt. (54)

The notation introduced in section 2 previously considers the maximum, but one can easily

convert the two via the relationship min(obj) = max(−obj) and hence with the same notation as

14



in section 2 we have

f(t, x, α) = −(x2 + θα2) with fx = −2x and fα = −2θα, (55)

g(x) = −Γx2, with gx = −2Γx, (56)

b(t, x, α) = α, with bx = 0 and bα = 1, (57)

σ(t, x, α) = σ, with σx = 0 and σα = 0. (58)

The maximization problem in the HJB equation (52) then becomes

max
α

{
−(x2 + θα2) + vx · a+

1

2
vxx(t, x)σ

2

}
, (59)

with first order condition

−2θα+ Vx = 0 ⇒ α =
1

2θ
vx. (60)

Substitution into the HJB equation and collecting terms gives

vt − x2 +
1

4θ
v2x +

1

2
vxxσ

2 = 0, (61)

with boundary condition v(T, x) = −Γx2. This is a non-linear partial differential equation and not

straightforward to solve. However, experience guides and a sophisticated guess of the functional

form

v(t, x) = h(t)x2 + g(t), (62)

with suitable differentiable function h(t) and g(t) will lead to its solution. In fact, substituting (62)

in (82) and collecting terms in powers of x gives{
h′(t)− 1 +

1

θ
h(t)2

}
x2 +

{
g′(t) + h(t)σ2

}
= 0, (63)

with boundary conditions h(T ) = −Γ and g(T ) = 0 derived from the corresponding boundary

condition of v(t, x). As the variable x can be varied freely, this yields a system of two ordinary

differential equations

h′(t) +
1

θ
h(t)2 = 1 (64)

g′(t) + h(t)σ2 = 0. (65)

This system presents a form of a Riccati differential equation and can fortunately be solved.

The solution for h(t) is

h(t) = −
√
Γ

(
1 + βe

2t√
θ

1− βe
2T√
θ

)
, with β =

Γ−
√
θ

Γ +
√
θ
· e

−2T√
θ . (66)
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The solution for g(t) can be obtained by integration

g(t) = σ2

∫ T

t
h(s)ds = −

√
Γ

(T − t) +
1

2

β ·
(
e

2t√
θ − e

2T√
θ

)√
θ

βe
2T√
θ − 1

 . (67)

With this and (62) we have obtained the value function of the stochastic linear regulator problem.

The optimal policy is derived from (60) and (62) as

αt =
1

θ
h(t)Xt. (68)

Let us now solve the same problem with the Lagrangian method. The starting point for the

Lagrange method are equations (40) and (41) which involve the Lagrange multiplier λt. Using

(55)-(58) we obtain

Et(dλt)

dt
= 2Xt and αt =

1

2θ
λt. (69)

The optimal policy αt is consistent with those derived in (60), but note that this is obtained in

the initial step of the Lagrangian approach already. In order to identify the Lagrange multiplier λt

we make a sophisticated guess λt = ϵ(t)Xt.
17 Using the Itô product rule we obtain

dλt = ϵ′(t)Xtdt+ ϵ(t)dXt

=

{
ϵ′(t) +

1

2θ
ϵ(t)2

}
Xtdt+ ϵ(t)σdWt. (70)

Comparing (70) with the first part of (69) we obtain

ϵ′(t) +
1

2θ
ϵ(t)2 = 2 with ϵ(t) = −2Γ. (71)

Comparing this with (64) one obtains immediately that ϵ(t) = 2 · h(t) and one obtains a closed

form for ϵ(t) from (66). Without our previous work relating to the HJB approach, this work would

of course also need to be carried out in the Lagrangian approach. However, note how quickly we

arrived at the point where we have both the Lagrangian and the optimal policy

αt =
ϵ(t)

2θ
Xt (72)

fully determined. There is only one ODE (71) in the Lagrange approach as opposed to the two

(coupled) ODE’s (64) and (65) in the HJB approach and we never have to make use of second-order

derivatives. On the basis of the above, at least for the stochastic linear regulator, the Lagrange

approach appears as much more straightforward.

17This sophisticated guess is at the same level of abstraction as the one that led to (62).
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3.2 Neoclassical Growth

Let us now consider another example, the neoclassical growth model, which has also been discussed

in Kwan and Chow (1997). Here

maxE
(∫ ∞

0
e−ρtu(ct)dt

)
(73)

dkt = (f(kt)− ct)dt+ σktdWt. (74)

Equations (40) and (41) imply

−Etdλt

dt
= λtf

′(kt) + σ
dλtdWt

dt
(75)

λt = e−ρtu′(ct). (76)

For convenience we define λ̃t = eρtλt and hence λ̃t = u′(ct). Because the problem (73) and (74)

is time homogenous and Markovian we can then conclude that λ̃t = λ̃(kt) with λ̃(k) a sufficiently

smooth function of k. We then obtain from the Itô formula that

dλt = ρeρtλ̃(kt)dt+ eρtλ̃′(kt)dkt +
1

2
eρtλ̃′′(kt)(dkt)

2, (77)

and hence

dλtdWt = eρtλ̃′(kt)σktdt. (78)

Therefore equation (75) becomes

ρλ̃(kt) + λ̃′(kt)(f(kt)− c(kt)) +
1

2
λ̃′′(kt)σ

2k2t + λ̃(kt)f
′(kt) + λ̃′(kt)σkt = 0. (79)

We denote with I(x) = (u′)−1(x) the inverse function of u′(x). Then c(k) = I(λ̃(k)) and we

obtain

λ̃(k)(ρ+ f ′(k)) + λ̃′(k)(f(k)− I(λ̃(k)) + σk) +
1

2
λ̃′′(k)σ2k2 = 0. (80)

In general this is a second order non-linear ordinary differential equation. Under some specific

assumptions about the utility function u(c) and the production function f(k) analytic solutions

can be obtained. Let us therefore assume that

u(c) =
1

γ
cγ and f(k) = kα. (81)

Then obviously I(x) = x
1

γ−1 and f ′(k) = αkα−1 and equation (59) becomes
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λ̃(k)(ρ+ αkα−1) + λ̃′(k)
(
kα − λ̃(k)

1
γ−1 + σk

)
+

1

2
λ̃′′(k)σ2k2 = 0. (82)

This ordinary differential equation still does not permit an explicit solution unless γ = 1 − α.

In the latter case we try the following functional form for λ̃(k):

λ̃(k) = mk−α. (83)

Substitution into (82) gives

mk−α(ρ+ αkα−1)−mαk−(α+1)
(
kα −m− 1

αk + σk
)
+

1

2
mα(α+ 1)k−(α+2)k2 = 0. (84)

The terms relating to k−1 in (84) cancel each other out, and (84) simplifies to

k−αm

(
ρ− ασ +

1

2
α(α+ 1) + αm− 1

α

)
= 0. (85)

The latter is satisfied if and only if m = 0 or

m =

(
ασ − ρ− 1

2α(α+ 1)

α

)−α

. (86)

The optimal consumption rule is then given by

c(k) =

(
ασ − ρ− 1

2α(α+ 1)

α

)
k, (87)

i.e. a linear function of capital.18

3.3 Portfolio Selection

Our second example is based on a model that was first discussed by Eaton (1981) and presented

in a slightly simplified form in Turnovsky (1995), where it is solved via use of HJB equations. We

will use this example purely for illustration. Here, instantaneous macro-economic output dY and

government spending dG are given as

dY = αK(dt+ dy) (88)

dG = gαKdt+ αKdz. (89)

The constant α measures productivity, K denotes the capital stock, the only factor of production,

and dy represents a productivity shock. Instantaneous government spending is expressed in terms

of a fraction of output g ∈ [0, 1]. The rate of return on government bonds dRB is assumed to be

18For this to be well defined we require certain conditions on the parameters, that guarantee that the consumption
capital ratio is positive, e.g. σ needs to be sufficiently large. We omit the details.
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stochastic

dRB = rBdt+ duB, (90)

where rB and duB are determined endogenously in macro-economic equilibrium. There is no money

in this model, so real and nominal rates are identical. The marginal product of capital is determined

as

dRK =
dY

K
= αdt+ αdy ≡ rKdt+ duK . (91)

Note that with a linear production technology, the marginal and average product of capital coincide.

The government’s tax take is derived from taxation of income from physical capital:

dT = τrKKdt+ τ ′KduK = ταKdt+ τ ′αKdy. (92)

Note that tax has a deterministic component and a stochastic component; according to Eaton

(1981) it is possible to tax different components of income differently.

The stochastic optimization problem of the representative consumer is expressed as the choice

of a consumption wealth ratio C/W and portfolio shares nB and nK in order to maximize

E
(∫ ∞

0

1

γ
C(t)γe−βtdt

)
, (93)

subject to the wealth accumulation

dW

W
=

(
nBrB + nK(1− τ)rK − C

W

)
dt+ dw, (94)

with

dw ≡ nBduB + nK(1− τ ′)duK . (95)

Note that

nB + nK = 1 (96)

and to simplify notation we use n = nB and (1− n) = nK in the following. Further note that dw

can be written as

dw = σ(n)dZ, (97)

where

σ(n)2 = n2σ2
B + (1− n)2σ2

K(1− τ ′)2 + 2n(1− n)(1− τ ′)σBK , (98)

and dZ is the increment of a Brownian motion Z. Using the notation of section 2, but with Z
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replacing W (which is already used to denote the wealth process in this section), we have

f(t,W, n,C) =
1

γ
Cγe−βt, (99)

b(t,W, n,C) = W (nrB + (1− n)(1− τ)rK − C, (100)

σ(t,W, n,C) = Wσ(n). (101)

We will derive the solution of this optimal control problem using equation (40) and (41) obtained

from the Lagrangian approach. To do so one requires the partial derivatives of the functions in (99)

- (101) with regards to the state variable W and the controls n and C. This is straightforward, the

results are as follows:

f ⇒


fW = 0

fn = 0

fC = Cγ−1e−βt,

(102)

b ⇒


bW = nrB + (1− n)(1− τ)rK

bn = W (rB − (1− τ)rK)

bC = −1,

(103)

σ ⇒


σW = σ(n)

σn = Wσn(n)

σC = 0.

(104)

Substituting these into (40) and (41) and suppressing all time indices for easier notation we obtain19

−Et(dλ)

dt
= σ(n)

dλdZ

dt
+ λρ(n) (105)

0 = Wσn(n)
dλdZ

dt
+ λWη (106)

0 = Cγ−1e−βt − λ, (107)

with ρ(n) = nrB + (1− n)(1− τ)rK and η = rB − rK(1− τ). Solving equation (106) for dλdZ
dt and

substituting into (84) as well as rearranging (86) gives

−Et(dλ)

dt
= λ

(
ρ(n)− σ(n)

σn(n)
η

)
(108)

λ = Cγ−1e−βt. (109)

19Note that (41) in fact results in two equations, one for each of the two control variables. This had been simplified
in section 2 for the matter of illustration.
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Denoting with µ = C
W the consumption to wealth ratio one obtains from (109), (94) and (97) that

dλ = −βλdt+ (γ − 1)λ[(ρ(n)− µ)dt+ σ(n)dZ] (110)

+
1

2
(γ − 1)(γ − 2)λσ(n)2dt,

and from this
Et(dλ)

dt
= (γ − 1)λ

[
(ρ(n)− µ) + σ(n)2

(γ
2
− 1
)]

− λβ. (111)

Combining (111) with (108) gives

(γ − 1)λ
[
(ρ(n)− µ) + σ(n)2

(γ
2
− 1
)]

− λβ = −λ

(
ρ(n)− σ(n)

σn(n)
η

)
. (112)

One immediately notes that the Lagrangian process λ cancels from (112) and that in consequence

the latter is a purely algebraic equation. Using further that

d

dn
σ(n)2 = 2σ(n)σn(n) ⇒ σn(n) =

d
dnσ(n)

2

2σ(n)
(113)

we obtain

(γ − 1)
[
(ρ(n)− µ) + σ(n)2

(γ
2
− 1
)]

− β = −

(
ρ(n)− 2

σ(n)2

d
dnσ(n)

2
η

)
. (114)

Then, from (110) we conclude that

dλdZ

dt
= (γ − 1)λσ(n) (115)

and therefore from equation (106)

(γ − 1)σ(n)σn(n) + η = 0 ⇒ 1

2
(γ − 1)

d

dn
σ(n)2 + η = 0. (116)

Substituting the latter into (114) we obtain

(γ − 1)
[
ρ(n)− µ+ σ(n)2

(γ
2
− 1
)]

− β = −(ρ(n) + (γ − 1)σ(n)2). (117)

Noticing that a number of terms cancel on both sides and solving for µ = C
W gives

C

W
=

β − γρ̂− 1
2γ(γ − 1)σ̂2

1− γ
, (118)

where with the same notation as in Turnovsky (1995) ρ̂ and σ̂2 denote the values of ρ(n) and

σ(n)2 under the optimal portfolio policy n∗. Equation (118) is identical to equation 14.A.10a.) in

Turnovsky (1995). However, with the Lagrangian approach its derivation becomes a purely alge-

braic exercise, avoiding any partial differential equations. This example can be further developed,
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however the purpose of this section is purely to illustrate our method, so we conclude at this stage.

4 Application to Numerical Schemes

In order to demonstrate the numerical potential of our approach we revert back to the discretized

version of the scheme, specifically equation (33). By conditioning each of the factors that are

multiplied with ξi or βi on Fi and using the tower property of the conditional expectation we

obtain

E

(
n−1∑
i=0

fx(i∆, X∗
i , α

∗
i )∆ · ξi + gx(X

∗
n) · ξn +

n−1∑
i=0

fa(i∆, X∗
i , α

∗
i )∆ · βi

)
(119)

+E

(
n−1∑
i=0

(E(λi+1|Fi)− λi)ξi + (E(λi+1|Fi)bx∆+ σxE(λi+1∆Wi|Fi)) ξi − λnξn

n−1∑
i=0

(E(λi+1|Fi)ba∆+ σaE(λi+1∆Wi|Fi))βi

)
= 0.

As each of the coefficients in front of the ξi and βi are Fi measurable, the fact that the ξi and

βi can be chosen from a complete system of L(Ω,Fi) and independent of each other implies that

coefficients multiplied with each ξi resp. βi add up to zero. This means that

λi = fx∆+ E(λi+1|Fi)(1 + bx∆) + E(λi+1∆Wi|Fi)σx (120)

0 = fa∆+ E(λi+1|Fi)ba∆+ E(λi+1∆Wi|Fi)σa. (121)

Note that equations (120) and (121) are extension of equations (25) and (26) in Chow (1993) to

the case where the volatility term is state and control dependent.20 They are discrete time versions

of equations (40) and (41) derived in section 2 and key to the derivation of numerical schemes.

Chow (1993) tries to provide a justification as to why individual terms in the first order condition

of his Lagrange function (24) should be zero, but is not mathematical rigorous. Our treatment of

the Lagrange function and its derivatives in the Frechét sense, together with the argument presented

above fills this gap. In addition, our treatment allows us to consider the important case, where the

volatility term is state and control dependent.

In the following we will present a numerical scheme, which will compute Lagrange multipliers

and optimal controls recursively. Unlike the scheme developed in Chow (1993, 1997) our scheme

does not require linearization. While linearization along a deterministic steady state can lead to

20Chow (1993) discusses the case xt+1 = f(xt, ut)+ ϵt+1. Under this assumption, the volatility term σ is constant,
hence σx and σa are zero. In equation (120) we have (1 + bx∆) and not bx∆ as Chow (1993) would seem to suggest,
but this is an effect of specifying the dynamics in terms of increments rather than absolute value, e.g. the analogous
specification in Chow would be of the type xt+1 = xt + f(xt, ut) + ϵt+1.
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good results for the optimal control along an optimal trajectory with a fixed initial condition, the

computed controls are not reliable when a large shock effects the system, say as in the context of

the sudden onset of a Financial crisis. The scheme presented here computes the optimal control as

a global feedback control in line with the Lagrange multiplier method presented above.

Our scheme is based on equations (120) and (121) together with the discretized state dynamics

Xi+1 = Xi + b(i∆, Xi, αi)∆ + σ(i∆, Xi, αi)∆Wi, (122)

but backwards in time. This means that starting with λn = gx(X
∗
n) and given X∗

n on a discrete grid

the dynamics (122) is simulated backward, that is (122) is solved for Xi given Xi+1 and the shock

∆Wi possibly using a proxy for the control.21 Then (120) and (121) are solved for λi where the

conditional expectations in both equations are obtained by linearly regressing λi+1 and λi+1∆Wi

on powers of the state variable Xi using the same generated random shocks as for solving (122).

Typically the regression includes powers up to order 2 or 3. Instead of simple powers one can also

use other series of polynomials, for example Hermite polynomials or series of elementary functions.

One can also center the polynomials around a specific value, e.g. a deterministic steady state, to

improve local properties of the solution.

Our approach shares similarities with the simulation of solutions of forward backward stochastic

differential equations. As in our approach, the main difficulty in the numerical treatment of for-

ward backward stochastic differential equations as compared to plain forward stochastic differential

equations is to carry out the backward step in time, where at some point a conditional expecta-

tion needs to be taken. For forward backward stochastic differential equations, where the forward

dynamics do not depend on the control this is slightly easier and can be done via Monte Carlo

simulation and regression. Bouchard and Touzi (2004), Fahim, Touzi and Warin (2011) and Gobet,

Lemor and Warin (2005) are important contributions in that context. In the case of a stochastic

optimal control problem as discussed in this paper, an additional optimization needs to be carried

out in this process and the conditional expectation to be taken in that backward step depends in

general on the control process. This is reflected in our equation (121). Ludwig et al. (2012) present

a numerical scheme to solve optimal stochastic control problems which also takes the continuous

time equations (5), (7) and (9) as a starting point. In the backward step, they simply replace

the conditional expectation of λi+1 with the actual λi+1, which has been obtained in the previous

backward step, compare equations (20) and (23) in Ludwig et al. (2012). This idea is adapted

and implemented in our approach. Other relevant literature on this topic includes Tan (2014),

who present an approach which is centered around the uncontrolled process X0 which serves as

an approximation to the optimally controlled process X, compare equations (2.6) and (2.7) in Tan

(2014). Reiter (1999) and Longstaff and Schwartz (2001) were among the first to use regression

based techniques to solve stochastic optimal control problems and Longstaff and Schwartz’ (2001)

21This depends on the applications and sometimes need to be chosen to be an anticipative control, similar as in
Ludwig et al (2012). If anticipative proxies are used, then they need to be regressed on powers of the state variable
as well in an additional step. Our numerical example will illustrate this.
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least square Monte Carlo approach has indeed become the benchmark for solving optimal stopping

problems, a particular type of optimal control problem. However, the use of Monte Carlo based

regression techniques in combination with the Lagrangian approach is entirely new and unique to

our work.

Instead of providing general algorithmic details of our proposed scheme, we work out a specific

example. This example expands on Chow’s (1993) test-case (Section 5) and is also related to our

example in section 3, but with slightly different parametrization.

maxE
(∫ ∞

0
e−ρtcγt dt

)
, (123)

dkt = (θkαt − ct)dt+ σktdWt. (124)

Note that an explicit solution can be obtained for the case α = 1, which is in fact the case that

Chow (1993) uses for benchmarking his method. In this case the optimal control is explicitly given

via

ct = c(kt) = q · kt,with q =
ρ− γθ

1− γ
+

1

2
σ2γ. (125)

Reiter (1997) also investigates the case for general α which we will also follow up. In this case,

equations (120) and (121) become

λi = E(λi+1|Fi)(1 + θαkα−1
i ∆) + E(λi+1∆Wi|Fi)σ (126)

ci =

(
1

γ
eρi∆E(λi+1|Fi)

) 1
γ−1

, (127)

and in each backward step ki is obtained as the solution of

ki+1 = ki + (θkαi − ĉi)∆ + σ∆Wi (128)

with

ĉi =

(
1

γ
eρi∆λi+1

) 1
γ−1

, (129)

i.e. the anticipative proxy of ci, similar as in Ludwig et al (2012). In the case of α = 1, i.e.

Chow (1993), equation (128) can be solved explicitly for ki, without much difficulty. For general α

equation (128) needs to be solved numerically. As indicated before, the scheme operates backward
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according to the following schema22

λi
E(λi+1∆Wi|Fi)

E(λi+1|Fi)(126)
oo ∆Wi

oo

ci ĉioo

��

ff

&&

λi+1
(108)

oo

lree

ki

lr

ee

ki+1
(128)oo

where the state variable at the final stage is modeled on a discrete grid and the final λn is obtained

from the transversality condition (34) as proxy of an infinite time horizon transversality condition.

This can be an iterative process. The two conditional expectations in the first row of the diagram

are obtained as follows:

� λi+1 and ki+1 are given as vectors from the previous round, each entry in the vector represents

a different state (gridpoint) (typically 10000)

� corresponding to each state, one random sample ∆Wi ∼ N (0,∆) is generated (typically

10000) samples

� ki is obtained as a vector from solving (128) (e.g. 10000 paths are generated backward in

time)

� E(λi+1|Fi) and E(λi+1∆Wi|Fi) are obtained by regressing λi+1 and λi+1∆Wi on basis function

of ki, typically 1, ki, k
2
i , k

3
i or a selection thereof or more suitable polynomial functions and

series of elementary functions

Once this is done λi is obtained from (126) and ci from regressing ĉi on the same basis functions.

Testing our method for the case α = 1 against the explicit solution (125) we obtain the relative

errors presented in Table 1. Already after 1000 iterations the error is completely negligible, after

5000 iterations it is practically zero. The number of paths generated is set to 10000. Under these

settings the elapsed time for 5.000 iterations is 28.392631 sec on an 11th Gen Intel(R) Core(TM)

i5-11400 @ 2.60GHz, 2592 Mhz, with 6 kernels and 12 logical processors.

The precision of our method is hence similar to Chow (1993), compare page 750 and Table

2. However, as Reiter (1997) demonstrated Chow (1993) runs into trouble if the model becomes

truly non-linear, e.g. for the case α ̸= 1. For our approach non-linearity does not impose great

difficulties, at least for our benchmark example (123) and (124). The following figure shows the

optimal consumption to capital ratio obtained from regressing on ki:

For α = 1 the optimal consumption capital ratio coincides with the results represented by table

1 and is extremely close to the exact value of q = 0.7 obtained from (125). For α ̸= 1 it is not

possible to solve the backward equation (128) explicitly. Instead this equation is solved numerically,

22Numbers in brackets refer to the corresponding equations in the main text, lr indicates linear regression.
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iterations c/k rel error

50 -0.154
100 -0.91
500 0.0051
1000 -2.5768e-04
5000 -9.6659e-05

Table 1: Relative error in the computation of the optimal consumption to capital ratio relative to
the exact solution (125) for the case α = 1.
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Figure 1: Optimal consumption to capital ratio obtained from regressing on ki as a function of
productivity coefficient α. Parameters: ∆ = 0.01;σ = 0.01; ρ = 0.5; γ = 0.5; θ = 0.3;n = 500,m =
1000.
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using the matlab fzero command. This is highly accurate but slows down the algorithm by roughly

a factor of 10. To compensate for that we reduced the number of paths generated to 1000 and

the number of iterations to 500. In addition the optimal control needs to be calculated for each

α = 0.1, 0.2, ...1.9, 2.0. The computational time for generating Figure 1 is roughly 5 minutes, which

is still extremely fast. The figure shows that the consumption to capital ratio falls with increasing

productivity, which is in line with standard economic intuition, where consumption decreases with

marginal productivity (which in equilibrium reflects the interest rate). We abstain from further

economic interpretation of the results, which are not the subject of this paper.

While our numerical scheme has been derived and motivated from within a continuous time

setting, the Lagrange approach initially presented in section 2 covers discrete time stochastic op-

timal control problems with continuous state variables. Equations (120) and (121) are in fact in

discrete time. As such our approach also offers potential for Monte Carlo and regression based

numerical schemes to be derived for models that were initially formulated in discrete time, which

in fact was the initial focus of Chow (1992) (equations (1), (2) and (3)). It is fair to say that the

use of linear regression and Monte Carlo backward simulation can be computationally intensive for

higher dimensional examples. We expect that our method can be improved and extended by using

recent methodology from machine learning, specifically deep learning and artificial neural networks.

We leave this for future work.

5 Conclusions

We have demonstrated how the classical Lagrange approach known from finite dimensional calculus

and introductory Economics lectures can be extended and used to solve continuous time stochastic

optimal control problems. This agenda was pioneered by Chow and co-authors with the publi-

cations in Chow (1992, 1993) and Kwan and Chow (1997). Our works goes beyond their results

showing how the relevant equations directly transcend from the Lagrangian multiplier approach in

a mathematical rigorous way using results from infinite dimensional functional analysis. We also

show how this approach is embedded in more modern approaches such as the stochastic maximum

principle expressed within the language of backward stochastic differential equations. Our two key

equations, (40) and (41), however allow us to identify the Lagrangian λt without any reference to

backward stochastic differential equations, making this approach far more accessible. In addition we

demonstrate how these two equations can be employed to derive efficient numerical schemes to solve

stochastic optimal control problems using backward Monte Carlo simulation and regression based

techniques. We provide a number of examples from Economics, which demonstrate the simplicity

and efficiency of our approach in practice. The examples are both of theoretical and numerical in

nature and show that the method can be applied effectively, leading to highly accurate results. In

conclusion, our paper shows that 30 years on since Chow (1992) introduced the Lagrangian method

for solving optimal control problems, this methodology is still highly relevant and timely having

its own place within more recent developments within the mathematical literature on stochastic
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optimal control theory.
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