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1 Course Details 
 

PHYS4051 Quantum Theory (Dec Exam) is a level 4 Physics Honours course. It is compulsory 

for Theoretical Physics students and elective for many other physics degree options. It is 

composed of 18 lectures and 2 full class tutorials, normally given in Semester 1.  

 

Lecturer: Dr Sarah Croke 

  Room 528, Kelvin Building 

  sarah.croke@glasgow.ac.uk 

 

Recommended Text:  

Alistair I. M. Rae, Quantum Mechanics, (Taylor & Francis) 

 

Course notes and Question Sheets are made available on Moodle.  

2 Assessment 
 

The course will be assessed via an examination in the December diet. It provides 10 H-level 

credits. 

3 Required Knowledge 
 

Students are expected to have completed the Level 3 course PHYS4025 Quantum Mechanics. 

They should be familiar with the motivations of quantum mechanics and its historical 

development as a solution to problems in early 20th century physics such as the ultraviolet 

catastrophe and Young’s double-slit experiment. They should be familiar with the concept of 

a wavefunction and wavefunction collapse, and the expression of observables as operators. 

They should by able to apply the Schrödinger Equation to simple potentials. We will assume 

a familiarity with mathematical concepts such as vector spaces and Fourier series. This course 

will have some overlap with P403H Atomic Systems. 

 

4 Intended Learning Outcomes 
 

By the end of the course, students will be able to demonstrate a knowledge and broad 

understanding of Quantum Theory. They should be familiar with the postulates of quantum 

mechanics, and be able to describe quantum states and measurements using the formal 

language of Hilbert space and operators. They should be able derive the Heisenberg 

uncertainty principle and the Pauli exclusion principle. Students should be able to 

demonstrate how quantum states change with time.  They should be able to demonstrate 



knowledge of entangled states and quantum encryption. They should be able to apply 

perturbation theory to both time-independent and time-dependent (Schrödinger) systems, 

derive the corrections to the energy levels of perturbed systems and derive Fermi’s golden 

rule. Students should also be able to discuss the consequences and applications of these ideas 

to topics such as lasers, masers, spontaneous and stimulated emission, electron spin 

resonance and nuclear magnetic resonance, and particle scattering. They should also 

appreciate how quantum mechanics affects and relates to the topics of their other Honours 

level physics courses. 

5 Course Outline 
 

5.1 Fundamental concepts 

We will review the principles and postulates of quantum mechanics using the formal language 
of operators, eigenvalues, eigenfunctions and commutators. We will introduce the state 
vector and Hilbert Space and relate physical observables to Hermitian operators. We will 
discuss the state vector in momentum and position space using the concepts of vector spaces, 
such as completeness and orthonormality, and demonstrate their relation to one another by 
Fourier transform. We will explore the probability interpretation of measurement and its 
associated conceptual issues. A general derivation of Heisenberg’s uncertainty principle will 
be given. We will make extensive use of Dirac’s “bra-ket” notation and the matrix 
representations of operators throughout.  

5.2 Angular momentum 

We will then review the orbital angular momentum operator in quantum mechanics and 
investigate its properties. We will introduce spin angular momentum and relate it to the Pauli 
matrices. This will lead to a demonstration of the Pauli exclusion principle.  

5.3 Quantum measurements 

We will discuss the locality of quantum measurements, the Einstein-Podolsky-Rosen Paradox 
and Bell’s inequality. This will lead to a brief overview of quantum cryptography and 
entangled states.  

5.4 Time-independent perturbation theory:  

An introduction to perturbation theory will be given, as an approximate method for solving 
the time-independent Schrödinger equation. We will apply this up to second order in the 
perturbative expansion for the case of non-degenerate energy eigenstates. The Stark effect 
will be used as an example. Perturbation theory for degenerate states will be discussed to 
first order and we will demonstrate how the perturbation lifts the degeneracy. We will use 
the variational principle to determine upper bounds on ground state energies.  



5.5 Time dependence 

We will investigate the time-dependent Schrödinger equation and show how systems evolve 
with time according to the Hamiltonian operator, including a discussion of stationary and non-
stationary states. We will apply this to the precession of a spinning charged particle in a 
magnetic field, neutrino oscillations and the spreading of wave packets. We will describe the 
sudden approximation and apply it to beta decay.  

5.6 Time-dependent perturbation theory 

We will derive expressions to first order in the perturbative expansion for time-dependent 
perturbation theory, leading to a Fermi’s golden rule. We will apply this to a particle in an 
electromagnetic field and show how this leads to selection rules. We will discuss lasers and 
masers and quantitatively investigate spontaneous and stimulated emission. We will then 
apply these ideas to electron spin resonance and nuclear magnetic resonance. Finally we will 
discuss line shapes, decay widths and particle scattering.  
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