Physics 1 PHYS1001

  • Academic Session: 2023-24
  • School: School of Physics and Astronomy
  • Credits: 40
  • Level: Level 1 (SCQF level 7)
  • Typically Offered: Runs Throughout Semesters 1 and 2
  • Available to Visiting Students: Yes

Short Description

To explore the basic ideas of physics in the areas of dynamics (from a vectorial point of view), waves & optics and thermal physics, electricity, electronics and magnetism (using vector formalism where appropriate), and quantum phenomena, as a foundation for more advanced study of physics and for application in other sciences.

Timetable

  Lectures daily at 0900 or 1300 (students attend one). Laboratories and tutorials as arranged.

Requirements of Entry

Pass in Mathematics and Physics (SQA Higher or equivalent).

Co-requisites

  MATHS1017 Mathematics 1

Assessment

Degree exam (2 papers) - 50%; Class Tests - 10%; Continuous assessment (Physics Communication Project; Moodle Checkpoint Quizzes) - 15%; Labs - 25%.

Main Assessment In: April/May

Course Aims

1. To ensure students understand the basic ideas of physics in the areas of dynamics (from a vectorial point of view), waves & optics and thermal physics, electricity, electronics and magnetism (using vector formalism where appropriate), and quantum phenomena, as a foundation for more advanced study of physics and for application in other sciences;

1. To introduce more advanced topics, particularly special relativity, lasers elementary particle physics;

1. To develop and then extend student's experience of experimental physics, by performing and analysing data from a number of straightforward experiments;

1. To develop practice in problem solving, requiring the application of mathematics to explain physical phenomena;

1. To develop the student's ability to keep laboratory records and write reports, including use of a word-processor package, and to introduce and then extend the use of a spreadsheet package for the presentation of results and the analysis of experimental results;

1. To introduce students to group working within the laboratory setting, and to joint discussion of problem solving strategies within small-group sessions.

Intended Learning Outcomes of Course

On completion of the course the student should be able to:

1. Apply Newton's Laws of Motion to a particle motion in a single straight line, uniform circular motion and simple harmonic motion;

2. State and apply the Conservation Laws of Energy and Momentum;

3. Decide when Special Relativity should be used;

4. Apply the laws of geometrical optics to mirror and lenses;

5. Describe waves mathematically, and apply this to treat optical interference;

6. Describe the operation of lasers;

7. State the meaning of temperature and heat, and heat capacity;

8. Distinguish different mechanisms of heat transfer, and know some of the thermal properties of gases;

9. Perform laboratory experiments and present the results in a word-processed report;

10. Perform calculations involving electrical field and potential;

11. Analyse DC circuits using Kirchhoff's Laws;

12. Design circuits involving operational amplifiers;

13. Describe the motion of particles in electric and magnetic fields, and calculate the

  magnetic force on a conductor;

14. Perform calculations based on the molecular properties of matter;

15. Apply standard equations of hydrostatics and elasticity;

16. Relate the structure of materials to molecular bonding mechanisms;

17. Carry out calculations in atomic physics;

18. Describe properties of photons, and appreciate wave-particle duality;

19. State some facts and concepts of Elementary Particle Physics and Cosmology;

20. Use a spreadsheet package to analyse laboratory results, and incorporate table and

  graphs in a word-processed report.

Minimum Requirement for Award of Credits

Submission of a minimum of 50% of the Moodle Checkpoint Quizzes.

Attendance at a minimum of 50% of the laboratory sessions and submission of associated work for marking.

Attendance at both final degree examination papers.